Isomorphism classes and automorphisms of locally-complex algebras
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVI, Tome 419 (2013), pp. 168-185 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Locally-complex algebras, introduced by M. Bresar, P. S̆emrl, and S̆. S̆penko, provide a generalization of Cayley–Dickson algebras to the case of arbitrary dimensions. The paper considers the isomorphic classes of locally-complex algebras and their automorphism groups. As a characterization of the isomorphism classes, a system of cpecific matrix equations is used. This system allows one to derive a few necessary conditions for locally-complex algebras to be isomorphic. Also classifications of locally-complex algebras of dimension three and of their automorphism groups are presented.
@article{ZNSL_2013_419_a10,
     author = {A. S. Smirnov},
     title = {Isomorphism classes and automorphisms of locally-complex algebras},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {168--185},
     year = {2013},
     volume = {419},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_419_a10/}
}
TY  - JOUR
AU  - A. S. Smirnov
TI  - Isomorphism classes and automorphisms of locally-complex algebras
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 168
EP  - 185
VL  - 419
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_419_a10/
LA  - ru
ID  - ZNSL_2013_419_a10
ER  - 
%0 Journal Article
%A A. S. Smirnov
%T Isomorphism classes and automorphisms of locally-complex algebras
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 168-185
%V 419
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_419_a10/
%G ru
%F ZNSL_2013_419_a10
A. S. Smirnov. Isomorphism classes and automorphisms of locally-complex algebras. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVI, Tome 419 (2013), pp. 168-185. http://geodesic.mathdoc.fr/item/ZNSL_2013_419_a10/

[1] M. Bresar, P. S̆emrl, S̆. S̆penko, “On locally complex algebras and low-dimensional Cayley–Dickson algebras”, J. Algebra, 1:1 (2011), 107–125 | DOI | MR | Zbl

[2] M. Mitrouli, C. Koukouvinos, “On the computation of the Smith normal form of compound matrices”, Numer. Algorithms, 16 (1997), 95–105 | DOI | MR | Zbl

[3] A. C. Aitken, Determinants and Matrices, Oliver Boyd, Edinburgh, 1967

[4] M. Marcus, Finite Dimensional Multilinear Algebra, Marcel Dekker, New York, 1973–1975 | Zbl

[5] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1967 | MR