Multiple iterative solution of linear algebraic systems with a partially varying matrix
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVI, Tome 419 (2013), pp. 16-25 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An iterative algorithm for solving a series of linear algebraic systems with a partially varying coefficient matrix is suggested. Simple formulas for evaluating the speed up obtained are derived and used in choosing the related parameters. As examples, the choice of the drop tolerance and of the initial guess are considered. Multiple solution of linear systems of orders 708, 1416, 3540, and 4425 arising in computing (by the method of moments) the electric capacity of two stripes on a dielectric layer above a perfect conductive plane in the range of dielectric permeability is analyzed. As compared with the Gauss method, a 49 times speed up in solving 1000 linear systems of order 4425 is achieved.
@article{ZNSL_2013_419_a1,
     author = {R. R. Akhunov and S. P. Kuksenko and V. K. Salov and T. R. Gazizov},
     title = {Multiple iterative solution of linear algebraic systems with a~partially varying matrix},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {16--25},
     year = {2013},
     volume = {419},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_419_a1/}
}
TY  - JOUR
AU  - R. R. Akhunov
AU  - S. P. Kuksenko
AU  - V. K. Salov
AU  - T. R. Gazizov
TI  - Multiple iterative solution of linear algebraic systems with a partially varying matrix
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 16
EP  - 25
VL  - 419
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_419_a1/
LA  - ru
ID  - ZNSL_2013_419_a1
ER  - 
%0 Journal Article
%A R. R. Akhunov
%A S. P. Kuksenko
%A V. K. Salov
%A T. R. Gazizov
%T Multiple iterative solution of linear algebraic systems with a partially varying matrix
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 16-25
%V 419
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_419_a1/
%G ru
%F ZNSL_2013_419_a1
R. R. Akhunov; S. P. Kuksenko; V. K. Salov; T. R. Gazizov. Multiple iterative solution of linear algebraic systems with a partially varying matrix. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXVI, Tome 419 (2013), pp. 16-25. http://geodesic.mathdoc.fr/item/ZNSL_2013_419_a1/

[1] S. P. Kuksenko, T. R. Gazizov, “Sovershenstvovanie algoritma vychisleniya metodom momentov ëmkostnykh matrits struktury provodnikov i dielektrikov v diapazone znachenii dielektricheskoi pronitsaemosti”, Elektromagn. volny elektronn. sist., 2012, no. 10, 13–21

[2] R. S. Surovtsev, V. K. Salov, “Issledovanie uskoreniya mnogokratnogo resheniya SLAU s chastichno izmenyayuscheisya matritsei chto blochnym metodom”, Elektromagn. volny elektronn. sist., 2012, no. 10, 22–24

[3] R. S. Surovtsev, S. P. Kuksenko, “Vychislenie matritsy emkostei proizvolnoi sistemy provodnikov i dielektrikov metodom momentov: zavisimost uskoreniya za schet blochnogo LU-razlozheniya ot poryadka matritsy SLAU”, Izvestiya vysshikh uchebnykh zavedenii. Fizika, 55:9/3 (2012), 126–130

[4] Gazizov T. R., Melkozerov A. O., Gazizov T. T., Kuksenko S. P., Zabolotskii A. M., Ashirbakiev R. I., Lezhnin Eg. V., Salov V. K., Lezhnin Ev. V., Orlov P. E., Kalimulin I. F., Surovtsev R. S., Komnatnov M. E., Svidetelstvo o gosudarstvennoi registratsii programmy dlya EVM No 2012660373. TALGAT 2011, Zayavka No 2012618426. Data postupleniya 5 oktyabrya 2012 g. Zaregistrirovano v Reestre programm dlya EVM 16 noyabrya 2012 g.

[5] T. R. Gazizov, S. P. Kuksenko, “Optimizatsiya dopuska obnuleniya pri reshenii SLAU iteratsionnymi metodami s predobuslovlivaniem v zadachakh vychislitelnoi elektrodinamiki”, Elektromagn. volny elektronn. sist., 2004, no. 8, 26–28

[6] S. P. Kuksenko, T. R. Gazizov, Iteratsionnye metody resheniya sistemy lineinykh algebraicheskikh uravnenii s plotnoi matritsei, Tomskii gosudarstvennyi universitet, Tomsk, 2007

[7] H. van der Vorst, “Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for solution of nonsymmetric linear systems”, SIAM J. Sci. Stat. Comput., 13 (1992), 631–644 | DOI | MR | Zbl

[8] S. P. Kuksenko, T. B. Gazizov, “Dense linear system solution by preconditioned iterative methods in computational electromagnetics”, 19th International Zurich Symposium of Electromagnetic Compatibility, 2008, 918–921