Transfinite diameter with respect to Neumann function
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 28, Tome 418 (2013), pp. 153-167 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the transfinite diameter with respect to Neumann function. The representations of this size are given in terms of the condenser capacity and Dirichlet integral of some function. As corollaries we derive the estimates of transfinite diameter with respect to Neumann function of the unit disk exterior. The description of the similar Fekete points is given.
@article{ZNSL_2013_418_a9,
     author = {E. G. Prilepkina},
     title = {Transfinite diameter with respect to {Neumann} function},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {153--167},
     year = {2013},
     volume = {418},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_418_a9/}
}
TY  - JOUR
AU  - E. G. Prilepkina
TI  - Transfinite diameter with respect to Neumann function
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 153
EP  - 167
VL  - 418
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_418_a9/
LA  - ru
ID  - ZNSL_2013_418_a9
ER  - 
%0 Journal Article
%A E. G. Prilepkina
%T Transfinite diameter with respect to Neumann function
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 153-167
%V 418
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_418_a9/
%G ru
%F ZNSL_2013_418_a9
E. G. Prilepkina. Transfinite diameter with respect to Neumann function. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 28, Tome 418 (2013), pp. 153-167. http://geodesic.mathdoc.fr/item/ZNSL_2013_418_a9/

[1] M. Fekete, “Uber die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten”, Math. J., 17 (1923), 228–249 | DOI | MR | Zbl

[2] G. Szego, “Bemerkungen zu einer Arbeit von Herrn M. Fekete `Uber die Verteilung der Wurzeln $\dots$' ”, Math. J., 21 (1924), 203–208 | DOI | MR | Zbl

[3] P. Duren, M. M. Schiffer, “Robin functions and distortion of capacity under conformal mapping”, Complex Variables, 21 (1993), 189–196 | DOI | MR | Zbl

[4] P. Duren, J. Pfaltzgraff, E. Thurman, “Physical interpretation and further properties of Robin capacity”, Algebra i analiz, 9:3 (1997), 211–219 | MR | Zbl

[5] M. D. O'Neill, R. E. Thurman, “Extremal domains for Robin capacity”, Complex Variables, 41 (2000), 91–109 | DOI | MR | Zbl

[6] C. H. Nasyrov, “Variatsii emkostei Robena i ikh prilozheniya”, Sib. mat. zh., 49:5 (2008), 1128–1146 | MR

[7] V. N. Dubinin, “O kvadratichnykh formakh, porozhdennykh funktsiyami Grina i Robena”, Mat. sb., 200:10 (2009), 25–38 | DOI | MR | Zbl

[8] B. Farcas, B. Nagy, “Transfinite diameter, Chebyshev constant and energy on locally compact spaces”, Potential Analysis, 28:3 (2008), 241–260 | DOI | MR

[9] V. N. Dubinin, Emkosti kondensatorov i simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo, Vladivostok, 2009

[10] D. Karp, E. Prilepkina, “Reduced modules with free boundary and its applications”, Ann. Acad. Scient. Fen., 34 (2009), 353–378 | MR | Zbl

[11] V. N. Dubinin, L. V. Kovalev, “Privedennyi modul kompleksnoi sfery”, Zap. nauchn. semin. POMI, 254, 1998, 76–94 | MR | Zbl

[12] V. N. Dubinin, E. G. Prilepkina, “O sokhranenii obobschennogo privedennogo modulya pri geometricheskikh preobrazovaniyakh ploskikh oblastei”, Dalnevost. mat. zh., 6:1–2 (2005), 39–56

[13] M. Tsuji, Potential theory in modern function theory, Tokyo, 1959 | MR