Transfinite diameter with respect to Neumann function
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 28, Tome 418 (2013), pp. 153-167

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the transfinite diameter with respect to Neumann function. The representations of this size are given in terms of the condenser capacity and Dirichlet integral of some function. As corollaries we derive the estimates of transfinite diameter with respect to Neumann function of the unit disk exterior. The description of the similar Fekete points is given.
@article{ZNSL_2013_418_a9,
     author = {E. G. Prilepkina},
     title = {Transfinite diameter with respect to {Neumann} function},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {153--167},
     publisher = {mathdoc},
     volume = {418},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_418_a9/}
}
TY  - JOUR
AU  - E. G. Prilepkina
TI  - Transfinite diameter with respect to Neumann function
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 153
EP  - 167
VL  - 418
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_418_a9/
LA  - ru
ID  - ZNSL_2013_418_a9
ER  - 
%0 Journal Article
%A E. G. Prilepkina
%T Transfinite diameter with respect to Neumann function
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 153-167
%V 418
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_418_a9/
%G ru
%F ZNSL_2013_418_a9
E. G. Prilepkina. Transfinite diameter with respect to Neumann function. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 28, Tome 418 (2013), pp. 153-167. http://geodesic.mathdoc.fr/item/ZNSL_2013_418_a9/