The module method and some extremal problems in the class~$\Sigma(r)$
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 28, Tome 418 (2013), pp. 136-152

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Sigma(r)$ denote some class of functions $f(z)$ meromorphic and univalent for $|z|>1$. In the class $\Sigma(r)$, some extremal problems are solved. The proofs are based on the module method.
@article{ZNSL_2013_418_a8,
     author = {G. V. Kuz'mina},
     title = {The module method and some extremal problems in the class~$\Sigma(r)$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {136--152},
     publisher = {mathdoc},
     volume = {418},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_418_a8/}
}
TY  - JOUR
AU  - G. V. Kuz'mina
TI  - The module method and some extremal problems in the class~$\Sigma(r)$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 136
EP  - 152
VL  - 418
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_418_a8/
LA  - ru
ID  - ZNSL_2013_418_a8
ER  - 
%0 Journal Article
%A G. V. Kuz'mina
%T The module method and some extremal problems in the class~$\Sigma(r)$
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 136-152
%V 418
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_418_a8/
%G ru
%F ZNSL_2013_418_a8
G. V. Kuz'mina. The module method and some extremal problems in the class~$\Sigma(r)$. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 28, Tome 418 (2013), pp. 136-152. http://geodesic.mathdoc.fr/item/ZNSL_2013_418_a8/