Some geometrical properties of extremal decompositions
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 28, Tome 418 (2013), pp. 121-135 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Problems on the maximum of the product of conformal radii powers for nonoverlapping simply connected domains are considered. It is proved that the bound of each domain of the extremal decomposition in certain cases is some Jordan curve.
@article{ZNSL_2013_418_a7,
     author = {V. O. Kuznetsov},
     title = {Some geometrical properties of extremal decompositions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {121--135},
     year = {2013},
     volume = {418},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_418_a7/}
}
TY  - JOUR
AU  - V. O. Kuznetsov
TI  - Some geometrical properties of extremal decompositions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 121
EP  - 135
VL  - 418
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_418_a7/
LA  - ru
ID  - ZNSL_2013_418_a7
ER  - 
%0 Journal Article
%A V. O. Kuznetsov
%T Some geometrical properties of extremal decompositions
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 121-135
%V 418
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_418_a7/
%G ru
%F ZNSL_2013_418_a7
V. O. Kuznetsov. Some geometrical properties of extremal decompositions. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 28, Tome 418 (2013), pp. 121-135. http://geodesic.mathdoc.fr/item/ZNSL_2013_418_a7/

[1] J. A. Jenkins, Univalent functions and conformal mapping, Ergeb. Math. Grenz. (N.F.), 18, Springer-Verlag, 1958 ; 2nd ed. mcorrected, 1965; Dzh. Dzhenkins, Odnolistnye funktsii i konformnye otobrazheniya, M., 1962 | MR | Zbl

[2] J. A. Jenkins, “On the existence of certain general extremal metrics. I”, Ann. of. Math. (2), 66 (1957), 440–453 ; “II”, Tohoku Math. J. (2), 45:2 (1993), 249–257 | DOI | MR | Zbl | DOI | MR | Zbl

[3] V. O. Kuznetsov, “O maksimume proizvedeniya konformnykh radiusov nenalegayuschikh oblastei v kruge”, Zap. nauchn. semin. LOMI, 237, 1997, 105–118 | MR | Zbl

[4] G. V. Kuzmina, Moduli semeistv krivykh i kvadratichnye differentsialy, Tr. matem. in-ta AN SSSR, 139, 1980 | MR | Zbl

[5] G. V. Kuzmina, “Metody geometricheskoi teorii funktsii. II”, Algebra i analiz, 9:5 (1997), 1–50 | MR | Zbl

[6] V. N. Dubinin, “Simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo”, Uspekhi mat. nauk, 49:1 (1994), 3–76 | MR | Zbl

[7] V. O. Kuznetsov, “O svoistvakh assotsiirovannykh kvadratichnykh differentsialov v nekotorykh ekstremalnykh zadachakh”, Zap. nauchn. semin. LOMI, 168, 1988, 85–97 | MR | Zbl

[8] P. P. Kufarev, “K voprosu o konformnykh otobrazheniyakh dopolnitelnykh oblastei”, Dokl. AN SSSR, 73 (1950), 881–884 | MR | Zbl

[9] P. P. Kufarev, A. E. Fales, “Ob odnoi ekstremalnoi zadache dlya dopolnitelnykh oblastei”, Uch. zapiski Tomsk. un-ta, 17, 1952, 25–35

[10] A. Yu. Solynin, “Minimizatsiya konformnogo radiusa pri krugovom suzhenii oblasti”, Zap. nauchn. semin. POMI, 254, 1998, 145–164 | MR | Zbl

[11] A. Yu. Solynin, “Geometricheskie svoistva ekstremalnykh razbienii i otsenki modulei semeistv krivykh v krugovom koltse”, Zap. nauchn. semin. LOMI, 204, 1993, 93–114 | MR | Zbl

[12] G. V. Kuzmina, “K zadache ob ekstremalnom razbienii $n$-svyaznoi oblasti”, Zap. nauchn. sem. LOMI, 185, 1990, 96–110 | MR | Zbl