Lattice points in the circle and the sphere
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 28, Tome 418 (2013), pp. 198-220

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $P(x)$ and $P_3(x)$ be the error terms in the Gaussian circle problem and the sphere problem, respectively. We investigate the asymptotic behavior of the sums $$ \sum_{\substack{k\le x\\k\equiv0\!\!\!\pmod p}}P(k),\quad\sum_{\substack{k\le x\\k\equiv0\!\!\!\pmod p}}P_3(k). $$ Here $p\ge2$ is a prime number.
@article{ZNSL_2013_418_a13,
     author = {O. M. Fomenko},
     title = {Lattice points in the circle and the sphere},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {198--220},
     publisher = {mathdoc},
     volume = {418},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_418_a13/}
}
TY  - JOUR
AU  - O. M. Fomenko
TI  - Lattice points in the circle and the sphere
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 198
EP  - 220
VL  - 418
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_418_a13/
LA  - ru
ID  - ZNSL_2013_418_a13
ER  - 
%0 Journal Article
%A O. M. Fomenko
%T Lattice points in the circle and the sphere
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 198-220
%V 418
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_418_a13/
%G ru
%F ZNSL_2013_418_a13
O. M. Fomenko. Lattice points in the circle and the sphere. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 28, Tome 418 (2013), pp. 198-220. http://geodesic.mathdoc.fr/item/ZNSL_2013_418_a13/