Lattice points in the circle and the sphere
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 28, Tome 418 (2013), pp. 198-220 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $P(x)$ and $P_3(x)$ be the error terms in the Gaussian circle problem and the sphere problem, respectively. We investigate the asymptotic behavior of the sums $$ \sum_{\substack{k\le x\\k\equiv0\!\!\!\pmod p}}P(k),\quad\sum_{\substack{k\le x\\k\equiv0\!\!\!\pmod p}}P_3(k). $$ Here $p\ge2$ is a prime number.
@article{ZNSL_2013_418_a13,
     author = {O. M. Fomenko},
     title = {Lattice points in the circle and the sphere},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {198--220},
     year = {2013},
     volume = {418},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_418_a13/}
}
TY  - JOUR
AU  - O. M. Fomenko
TI  - Lattice points in the circle and the sphere
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 198
EP  - 220
VL  - 418
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_418_a13/
LA  - ru
ID  - ZNSL_2013_418_a13
ER  - 
%0 Journal Article
%A O. M. Fomenko
%T Lattice points in the circle and the sphere
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 198-220
%V 418
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_418_a13/
%G ru
%F ZNSL_2013_418_a13
O. M. Fomenko. Lattice points in the circle and the sphere. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 28, Tome 418 (2013), pp. 198-220. http://geodesic.mathdoc.fr/item/ZNSL_2013_418_a13/

[1] M. N. Huxley, Area, lattice points, and exponential sums, Oxford, 1996 | MR

[2] D. R. Heath-Brown, “Lattice points in the sphere”, Number theory in progress, v. 2, de Gruyter, Berlin, 1999, 883–892 | MR | Zbl

[3] E. Landau, “Über die Gitterpunkte in einem Kreise”, Math. Zeit., 5 (1919), 319–320 | DOI | MR | Zbl

[4] G. H. Hardy, E. Landau, “The lattice points of a circle”, Proc. Royal Soc. A, 105 (1924), 244–258 | DOI | Zbl

[5] I. M. Vinogradov, Izbrannye trudy, M., 1952

[6] O. M. Fomenko, “O raspredelenii drobnykh chastei mnogochlenov ot dvukh peremennykh”, Zap. nauchn. semin. POMI, 404, 2012, 222–232 | MR

[7] R. A. Smith, “The average order of a class of arithmetic functions over arithmetic progressions with application to quadratic forms”, J. für die reine und angew. Math., 317 (1980), 74–87 | MR | Zbl

[8] E. Landau, Ausgewählte Abhandlungen zur Gitterpunktlehre, Berlin, 1962 | MR

[9] Z. I. Borevich, I. R. Shafarevich, Teoriya chisel, M., 1985 | MR

[10] R. A. Smith, “The circle problem in an arithmetic progression”, Canad. Math. Bull., 11 (1968), 175–184 | DOI | MR | Zbl

[11] M. Abramovits, I. Stigan, Spravochnik po spetsialnym funktsiyam, M., 1979

[12] O. M. Fomenko, “O dzeta-funktsii Epshteina, I”, Zap. nauchn. semin. POMI, 286, 2002, 169–178 ; “II”, Зап. научн. семин. ПОМИ, 371, 2009, 157–170 | MR | Zbl

[13] K. Ramachandra, A. Sankaranarayanan, “Hardy's theorem for zeta-functions of quadratic forms”, Proc. Indian Acad. Sci. (Math. Sci.), 106:3 (1996), 217–226 | DOI | MR | Zbl

[14] E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd edn., revised by D. R. Heath-Brown, New York, 1986 | MR

[15] S. A. Stepanov, Arifmetika algebraicheskikh krivykh, M., 1991 | MR

[16] I. M. Vinogradov, Osobye varianty metoda trigonometricheskikh summ, M., 1976 | MR

[17] V. Jarnik, “Über die Mittelwertsätze der Gitterpuntlehre. 5 Abhandlung”, C̆asopis pro pĕst. mat. a fys., 69 (1940), 148–174 | MR | Zbl

[18] Y.-K. Lau, “On the mean square formula of the error term for a class of arithmetical functions”, Monatsh. Math., 128 (1999), 111–129 | DOI | MR | Zbl

[19] A. Z. Valfish, Tselye tochki v mnogomernykh sharakh, Tbilisi, 1959 | MR

[20] J. L. Hafner, “On the average order of a class of arithmetical functions”, J. Number Theory, 15 (1982), 36–76 | DOI | MR | Zbl