On the Dedekind zeta function
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 28, Tome 418 (2013), pp. 184-197 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $K_n$ be a number field of degree $n$ over $\mathbb Q$. Denote by $A_{K_n}(x)$ the number of ideal with norm $\leq x$. Landau's classical estimate is $$ A_{K_n}(x)=\Lambda_nx+O(x^{(n-1)/(n+1)}). $$ In this paper the error term is improved for the non-normal field $K_4=\mathbb Q(\root4\of m)$ and for $K_6$, the normal closure of a cubic field $K_3$ with the Galois group $S_3$.
@article{ZNSL_2013_418_a12,
     author = {O. M. Fomenko},
     title = {On the {Dedekind} zeta function},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {184--197},
     year = {2013},
     volume = {418},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_418_a12/}
}
TY  - JOUR
AU  - O. M. Fomenko
TI  - On the Dedekind zeta function
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 184
EP  - 197
VL  - 418
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_418_a12/
LA  - ru
ID  - ZNSL_2013_418_a12
ER  - 
%0 Journal Article
%A O. M. Fomenko
%T On the Dedekind zeta function
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 184-197
%V 418
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_418_a12/
%G ru
%F ZNSL_2013_418_a12
O. M. Fomenko. On the Dedekind zeta function. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 28, Tome 418 (2013), pp. 184-197. http://geodesic.mathdoc.fr/item/ZNSL_2013_418_a12/

[1] E. Landau, Einführung in die elementare und analytische Theorie der algebraischen Zahlen und der Ideale, Leipzig, 1927

[2] K. Chandrasekharan, R. Narasimhan, “On the mean value of the error term of a class of arithmetical functions”, Acta Math., 112 (1964), 41–67 | DOI | MR | Zbl

[3] Y.-K. Lau, “On the mean square formula of the error term for a class of arithmetical functions”, Monatsh. Math., 128 (1999), 111–129 | DOI | MR | Zbl

[4] O. M. Fomenko, “Teoremy o srednikh znacheniyakh dlya odnogo klassa ryadov Dirikhle”, Zap. nauchn. semin. POMI, 357, 2008, 201–223 | Zbl

[5] E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd edn., revised by D. R. Heath-Brown, New York, 1986 | MR

[6] M. N. Huxley, N. Watt, “The number of ideals in a quadratic field”, Proc. Indian Acad. Sci. (Math. Sci.), 104 (1994), 157–165 | DOI | MR | Zbl

[7] W. Müller, “On the distribution of ideals in cubic number fields”, Monatsh. Math., 106 (1988), 211–219 | DOI | MR | Zbl

[8] H. Hasse, Arithmetische Bestimmung von Grundeinheit und Klassenzahl in zyklischen, kubischen und biquadratischen Zahlkörpern, Berlin, 1950

[9] H. Hasse, “Arithmetische Theorie der kubischen Zahlkörper auf klassenkörpertheoretischer Grundlage”, Math. Z., 31 (1930), 565–582 | DOI | MR | Zbl

[10] Dzh. Kassels, A. Frëlikh (red.), Algebraicheskaya teoriya chisel, M., 1969

[11] H. Cohn, A classical invitation to algebraic numbers and class fields, New York etc., 1978 | MR

[12] H. Hasse, Bericht über neuere Untersuchungen und Probleme auf der Theorie der algebraischen Zählkörper, Teil I, Teil Ia, Würzburg–Wien, 1965

[13] M. Koike, “Higher reciprocity law, modular forms of weight 1 and elliptic curves”, Nagoya Math. J., 98 (1985), 109–115 | MR | Zbl

[14] A. Ivić, “Large values of certain number-theoretic error terms”, Acta Arithm., 56 (1990), 135–159 | MR | Zbl

[15] K. Chandrasekharan, R. Narasimhan, “The approximate functional equation for a class of zeta-functions”, Math. Ann., 152 (1963), 30–64 | DOI | MR | Zbl

[16] D. R. Heath-Brown, “Mean values of the zeta-function and divisor problems”, Recent Progress in Analytic Number Theory (Durham, 1979), v. 1, London, 1981, 115–119 | MR | Zbl

[17] A. Ivić, “On zeta-functions associated with Fourier coefficients of cusp forms”, Proc. of the Amalfi Conf. on Analytic Number Theory (Maiori, 1989), Salerno, 1992, 231–246 | MR | Zbl

[18] N. Ishii, “Cusp forms of weight one, quartic reciprocity and elliptic curves”, Nagoya Math. J., 98 (1985), 117–137 | MR | Zbl

[19] J.-P. Serre, “Modular forms of weight one and Galois representations”, Algebraic Number Fields, $L$-functions and Galois Properties (Durham, 1975), London, 1977, 193–268 | MR | Zbl

[20] R. M. Kaufman, “Ob ukorochennykh uravneniyakh A. F. Lavrika”, Zap. nauchn. semin. LOMI, 76, 1978, 124–158 | MR | Zbl

[21] R. M. Kaufman, “Otsenka $L$-funktsii Gekke na polovinnoi pryamoi”, Zap. nauchn. semin. LOMI, 91, 1979, 40–51 | MR | Zbl

[22] D. R. Heath-Brown, “The growth rate of the Dedekind zeta-function on the critical line”, Acta Arithm., 49 (1988), 323–339 | MR | Zbl

[23] K. Ramachandra, “Application of a theorem of Montgomery and Vaughan to the zeta-function”, J. London Math. Soc. (2), 10 (1975), 482–486 | DOI | MR | Zbl

[24] A. Good, “Approximative Funktionalgleichungen und Mittelwertsätze für Dirichletreihen, die Spitzenformen assoziiert sind”, Comment. Math. Helvetici, 50 (1975), 327–361 | DOI | MR | Zbl

[25] L. Weinstein, “The mean value of the Artin $L$-series and its derivative of a cubic field”, Glasgow Math. J., 21 (1980), 9–18 | DOI | MR | Zbl