On the Dedekind zeta function
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 28, Tome 418 (2013), pp. 184-197

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $K_n$ be a number field of degree $n$ over $\mathbb Q$. Denote by $A_{K_n}(x)$ the number of ideal with norm $\leq x$. Landau's classical estimate is $$ A_{K_n}(x)=\Lambda_nx+O(x^{(n-1)/(n+1)}). $$ In this paper the error term is improved for the non-normal field $K_4=\mathbb Q(\root4\of m)$ and for $K_6$, the normal closure of a cubic field $K_3$ with the Galois group $S_3$.
@article{ZNSL_2013_418_a12,
     author = {O. M. Fomenko},
     title = {On the {Dedekind} zeta function},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {184--197},
     publisher = {mathdoc},
     volume = {418},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_418_a12/}
}
TY  - JOUR
AU  - O. M. Fomenko
TI  - On the Dedekind zeta function
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 184
EP  - 197
VL  - 418
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_418_a12/
LA  - ru
ID  - ZNSL_2013_418_a12
ER  - 
%0 Journal Article
%A O. M. Fomenko
%T On the Dedekind zeta function
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 184-197
%V 418
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_418_a12/
%G ru
%F ZNSL_2013_418_a12
O. M. Fomenko. On the Dedekind zeta function. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 28, Tome 418 (2013), pp. 184-197. http://geodesic.mathdoc.fr/item/ZNSL_2013_418_a12/