Piecewise linear approximation and polyhedral surfaces
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 28, Tome 418 (2013), pp. 172-183 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The piecewise linear approximation of admissible functions for the condenser capacity is considered. By means of this approximation, the approximate sufficiency of polyhedral surfaces for the module of a condenser is established.
@article{ZNSL_2013_418_a11,
     author = {P. A. Pugach and V. A. Shlyk},
     title = {Piecewise linear approximation and polyhedral surfaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {172--183},
     year = {2013},
     volume = {418},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_418_a11/}
}
TY  - JOUR
AU  - P. A. Pugach
AU  - V. A. Shlyk
TI  - Piecewise linear approximation and polyhedral surfaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 172
EP  - 183
VL  - 418
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_418_a11/
LA  - ru
ID  - ZNSL_2013_418_a11
ER  - 
%0 Journal Article
%A P. A. Pugach
%A V. A. Shlyk
%T Piecewise linear approximation and polyhedral surfaces
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 172-183
%V 418
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_418_a11/
%G ru
%F ZNSL_2013_418_a11
P. A. Pugach; V. A. Shlyk. Piecewise linear approximation and polyhedral surfaces. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 28, Tome 418 (2013), pp. 172-183. http://geodesic.mathdoc.fr/item/ZNSL_2013_418_a11/

[1] V. V. Aseev, “$NED$-mnozhestva, lezhaschie v giperploskosti”, Sib. mat. zh., 50:5 (2009), 967–986 | MR | Zbl

[2] Yu. V. Dymchenko, V. A. Shlyk, “Dostatochnost semeistva lomanykh v metode modulei i ustranimye mnozhestva”, Sib. mat. zh., 51:6 (2010), 1298–1315 | MR | Zbl

[3] Yu. V. Dymchenko, V. A. Shlyk, “Sootnosheniya mezhdu vesovoi emkostyu kondensatora i vesovym modulem razdelyayuschikh poverkhnostei”, Dalnevostochnyi mat. zh., 1996, no. 2, 72–80 | MR | Zbl

[4] Yu. V. Dymchenko, V. A. Shlyk, “O dostatochnosti semeistva poliedralnykh poverkhnostei v metode modulei i ustranimye mnozhestva”, Mat. zametki, 90:2 (2011), 216–230 | DOI | MR | Zbl

[5] P. A. Pugach, V. A. Shlyk, “Obobschennye emkosti i poliedralnye poverkhnosti”, Zap. nauchn. semin. POMI, 383, 2010, 148–178 | MR

[6] E. De Giorgi, “Nuovi teoremi relativi alle misure $(r-1)$-dimensionali in uno spazio ad $r$ dimensioni”, Ricerche Mat., 4 (1955), 95–113 | MR | Zbl

[7] B. Muckenhoupt, “Weighted norm inequalities for the Nardy maximal functions”, Trans. Amer. Math. Soc., 192 (1972), 207–226 | DOI | MR

[8] A. A. Glazyrin, “O simplitsialnykh razbieniyakh mnogogrannikov”, Mat. zametki, 85:6 (2009), 840–848 | DOI | MR | Zbl

[9] V. A. Zorich, Matematicheskii analiz, v. 2, M., 1984

[10] Yu. V. Dymchenko, V. A. Shlyk, “Obobschennye emkosti, sostavnye krivye i ustranimye mnozhestva”, Zap. nauchn. semin. POMI, 404, 2012, 100–119 | MR

[11] M. Ohtsuka, “Extremal length and precise functions”, GAKUTO Int. J. Adv. Math. Sci. Appl., 19 (2003), 1–343 | MR

[12] V. M. Miklyukov, Vvedenie v negladkii analiz, Izd-vo VolGU, Volgograd, 2008