Generalized flowers in $k$-connected graph. Part~2
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part VI, Tome 417 (2013), pp. 11-85

Voir la notice de l'article provenant de la source Math-Net.Ru

We continue the work started in [8] and research $k$-cutsets in $k$-connected graphs. Several new statesments concerning the structure of generalized flowers in $k$-connected graphs are proved here. Generalized flowers in the case $k=4$ are considered after. For $k=4$ we give the description of maximal generalized flowers with an empty center which have a common catset.
@article{ZNSL_2013_417_a1,
     author = {A. L. Glazman},
     title = {Generalized flowers in $k$-connected graph. {Part~2}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {11--85},
     publisher = {mathdoc},
     volume = {417},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_417_a1/}
}
TY  - JOUR
AU  - A. L. Glazman
TI  - Generalized flowers in $k$-connected graph. Part~2
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 11
EP  - 85
VL  - 417
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_417_a1/
LA  - ru
ID  - ZNSL_2013_417_a1
ER  - 
%0 Journal Article
%A A. L. Glazman
%T Generalized flowers in $k$-connected graph. Part~2
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 11-85
%V 417
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_417_a1/
%G ru
%F ZNSL_2013_417_a1
A. L. Glazman. Generalized flowers in $k$-connected graph. Part~2. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part VI, Tome 417 (2013), pp. 11-85. http://geodesic.mathdoc.fr/item/ZNSL_2013_417_a1/