Independent sets and chromatic numbers of circle graphs
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part VI, Tome 417 (2013), pp. 5-10 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let the vertices of a circle graph be divided into several groups. This paper contains lower bounds on the size of an independent set that can be contained in one group of this subdivision.
@article{ZNSL_2013_417_a0,
     author = {S. L. Berlov},
     title = {Independent sets and chromatic numbers of circle graphs},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--10},
     year = {2013},
     volume = {417},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_417_a0/}
}
TY  - JOUR
AU  - S. L. Berlov
TI  - Independent sets and chromatic numbers of circle graphs
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 5
EP  - 10
VL  - 417
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_417_a0/
LA  - ru
ID  - ZNSL_2013_417_a0
ER  - 
%0 Journal Article
%A S. L. Berlov
%T Independent sets and chromatic numbers of circle graphs
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 5-10
%V 417
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_417_a0/
%G ru
%F ZNSL_2013_417_a0
S. L. Berlov. Independent sets and chromatic numbers of circle graphs. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part VI, Tome 417 (2013), pp. 5-10. http://geodesic.mathdoc.fr/item/ZNSL_2013_417_a0/

[1] F. Gavril, “Algorithms for a maximum clique and a maximum independent set of a circle graph”, Networks, 3 (1975), 261–273 | DOI | MR

[2] H. de Fraysseix, “A characterization of circle graphs”, Europ. J. Combin., 5 (1984), 223–238 | DOI | MR | Zbl

[3] A. V. Kostochka, J. Kratochvil, “Covering and coloring poligon-circle graphs”, Disc. Math., 163 (1997), 299–305 | DOI | MR | Zbl

[4] A. V. Kostochka, “On upper bounds for the chromatic numbers of graphs”, Trudy Inst. Math., 10, 1988, 204–226 | MR | Zbl

[5] A. A. Ageev, “A triangle-free circle graph with chromatic number 5”, Discrete Mathematics, 152:1–3 (1996), 295–298 | DOI | MR | Zbl

[6] G. V. Nenashev, “Otsenka khromaticheskogo chisla grafa peresecheniya khord na okruzhnosti bez $K_4$”, Zap. nauchn. semin. POMI, 391, 2012, 149–156 | MR | Zbl

[7] V. A. Emelichev, O. I. Melnikov, V. I. Sarvanov, R. I. Tyshkevich, Lektsii po teorii grafov, Nauka, 1990 | MR | Zbl