On the relationship between $\mathrm{AK}$-stability and $\mathrm{BMO}$-regularity
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 41, Tome 416 (2013), pp. 175-187

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(X,Y)$ be a couple of Banach lattices of measurable functions on $\mathbb T\times\Omega$ having the Fatou property and satisfying a certin condition $(*)$ that makes it possible to consistently introduce the Hardy-type subspaces of $X$ and $Y$. We establish that the bounded $\mathrm{AK}$-stability property and the $\mathrm{BMO}$-regularity property are equivalent for such couples. If either lattice $XY'$ is Banach, or both lattices $X^2$ and $Y^2$ are Banach, or $Y=L_p$ with $p\in\{1,2,\infty\}$, then the $\mathrm{AK}$-stability property and the $\mathrm{BMO}$-regularity property are also equivalent for such couples $(X, Y)$.
@article{ZNSL_2013_416_a9,
     author = {D. V. Rutsky},
     title = {On the relationship between $\mathrm{AK}$-stability and $\mathrm{BMO}$-regularity},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {175--187},
     publisher = {mathdoc},
     volume = {416},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_416_a9/}
}
TY  - JOUR
AU  - D. V. Rutsky
TI  - On the relationship between $\mathrm{AK}$-stability and $\mathrm{BMO}$-regularity
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 175
EP  - 187
VL  - 416
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_416_a9/
LA  - ru
ID  - ZNSL_2013_416_a9
ER  - 
%0 Journal Article
%A D. V. Rutsky
%T On the relationship between $\mathrm{AK}$-stability and $\mathrm{BMO}$-regularity
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 175-187
%V 416
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_416_a9/
%G ru
%F ZNSL_2013_416_a9
D. V. Rutsky. On the relationship between $\mathrm{AK}$-stability and $\mathrm{BMO}$-regularity. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 41, Tome 416 (2013), pp. 175-187. http://geodesic.mathdoc.fr/item/ZNSL_2013_416_a9/