On the relationship between $\mathrm{AK}$-stability and $\mathrm{BMO}$-regularity
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 41, Tome 416 (2013), pp. 175-187 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $(X,Y)$ be a couple of Banach lattices of measurable functions on $\mathbb T\times\Omega$ having the Fatou property and satisfying a certin condition $(*)$ that makes it possible to consistently introduce the Hardy-type subspaces of $X$ and $Y$. We establish that the bounded $\mathrm{AK}$-stability property and the $\mathrm{BMO}$-regularity property are equivalent for such couples. If either lattice $XY'$ is Banach, or both lattices $X^2$ and $Y^2$ are Banach, or $Y=L_p$ with $p\in\{1,2,\infty\}$, then the $\mathrm{AK}$-stability property and the $\mathrm{BMO}$-regularity property are also equivalent for such couples $(X, Y)$.
@article{ZNSL_2013_416_a9,
     author = {D. V. Rutsky},
     title = {On the relationship between $\mathrm{AK}$-stability and $\mathrm{BMO}$-regularity},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {175--187},
     year = {2013},
     volume = {416},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_416_a9/}
}
TY  - JOUR
AU  - D. V. Rutsky
TI  - On the relationship between $\mathrm{AK}$-stability and $\mathrm{BMO}$-regularity
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 175
EP  - 187
VL  - 416
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_416_a9/
LA  - ru
ID  - ZNSL_2013_416_a9
ER  - 
%0 Journal Article
%A D. V. Rutsky
%T On the relationship between $\mathrm{AK}$-stability and $\mathrm{BMO}$-regularity
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 175-187
%V 416
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_416_a9/
%G ru
%F ZNSL_2013_416_a9
D. V. Rutsky. On the relationship between $\mathrm{AK}$-stability and $\mathrm{BMO}$-regularity. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 41, Tome 416 (2013), pp. 175-187. http://geodesic.mathdoc.fr/item/ZNSL_2013_416_a9/

[1] J. Bergh, J. Löfström, Interpolation spaces. An introduction, Springer-Verlag, 1976 | MR | Zbl

[2] F. Cobos, J. Peetre, L. E. Persson, “On the connection between real and complex interpolation of quasi-Banach spaces”, Bull. Sci. Math., 122 (1998), 17–37 | DOI | MR | Zbl

[3] F. Cobos, T. Schonbek, “On a theorem by Lions and Peetre about interpolation between a Banach space and its dual”, Houston J. Math., 24:2 (1998), 325–344 | MR | Zbl

[4] N. J. Kalton, “Complex interpolation of Hardy-type subspaces”, Math. Nachr., 171 (1995), 227–258 | DOI | MR | Zbl

[5] S. V. Kisliakov, “Interpolation of $H_p$-spaces: some recent developments”, Israel Math. Conf., 13 (1999), 102–140 | MR | Zbl

[6] S. V. Kislyakov, “On BMO-regular couples of lattices of measurable functions”, Stud. Math., 159:2 (2003), 277–289 | DOI | MR

[7] S. G. Krein, Ju. I. Petunin, E. M. Semenov, Interpolation of linear operators, Translations of Mathematical Monographs, 54, American Mathematical Society, 1982 | MR

[8] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, 1993 | MR | Zbl

[9] S. V. Kislyakov, “O BMO-regulyarnykh reshetkakh izmerimykh funktsii”, Algebra i Analiz, 14:2 (2002), 117–135 | MR | Zbl

[10] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, BKhV, Peterburg, 2004

[11] D. V. Rutskii, “Dva zamechaniya o svyazi BMO-regulyarnosti i analiticheskoi ustoichivosti interpolyatsii dlya reshetok izmerimykh funktsii”, Zap. nauchn. semin. POMI, 366, 2009, 102–115 | MR

[12] D. V. Rutskii, “Zamechaniya o BMO-regulyarnosti i AK-ustoichivosti”, Zap. nauchn. semin. POMI, 376, 2010, 116–166 | MR

[13] D. V. Rutskii, BMO-regulyarnost v reshëtkakh izmerimykh funktsii i interpolyatsiya, Dissertatsiya, S.-Peterburgskoe otdelenie Matematicheskogo instituta im. V. A. Steklova RAN, 2011

[14] D. V. Rutskii, “BMO-regulyarnost v reshëtkakh izmerimykh funktsii na prostranstvakh odnorodnogo tipa”, Alebra i Analiz, 23:2 (2011), 248–295 | MR | Zbl