Constructive description of the Besov classes in convex domains in $\mathbb C^d$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 41, Tome 416 (2013), pp. 136-174
Voir la notice de l'article provenant de la source Math-Net.Ru
The method of pseudoanalytic continuation developed by E. M. Dyn'kin is extended to convex domains in $\mathbb C^d$ and is used to give a constructive description of the Besov classes in such domains.
@article{ZNSL_2013_416_a8,
author = {A. S. Rotkevich},
title = {Constructive description of the {Besov} classes in convex domains in $\mathbb C^d$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {136--174},
publisher = {mathdoc},
volume = {416},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_416_a8/}
}
A. S. Rotkevich. Constructive description of the Besov classes in convex domains in $\mathbb C^d$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 41, Tome 416 (2013), pp. 136-174. http://geodesic.mathdoc.fr/item/ZNSL_2013_416_a8/