Constructive description of the Besov classes in convex domains in $\mathbb C^d$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 41, Tome 416 (2013), pp. 136-174 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The method of pseudoanalytic continuation developed by E. M. Dyn'kin is extended to convex domains in $\mathbb C^d$ and is used to give a constructive description of the Besov classes in such domains.
@article{ZNSL_2013_416_a8,
     author = {A. S. Rotkevich},
     title = {Constructive description of the {Besov} classes in convex domains in $\mathbb C^d$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {136--174},
     year = {2013},
     volume = {416},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_416_a8/}
}
TY  - JOUR
AU  - A. S. Rotkevich
TI  - Constructive description of the Besov classes in convex domains in $\mathbb C^d$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 136
EP  - 174
VL  - 416
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_416_a8/
LA  - ru
ID  - ZNSL_2013_416_a8
ER  - 
%0 Journal Article
%A A. S. Rotkevich
%T Constructive description of the Besov classes in convex domains in $\mathbb C^d$
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 136-174
%V 416
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_416_a8/
%G ru
%F ZNSL_2013_416_a8
A. S. Rotkevich. Constructive description of the Besov classes in convex domains in $\mathbb C^d$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 41, Tome 416 (2013), pp. 136-174. http://geodesic.mathdoc.fr/item/ZNSL_2013_416_a8/

[1] L. A. Aizenberg, A. P. Yuzhakov, Integralnye predstavleniya i vychety v kompleksnom analize, Nauka, M., 1979

[2] Yu. A. Brudnyi, “Prostranstva, opredelyaemye s pomoschyu lokalnykh priblizhenii”, Tr. MMO, 24, Izd-vo Moskovskogo un-ta, M., 1971, 69–132 | MR | Zbl

[3] Yu. A. Brudnyi, I. P. Irodova, “Nelineinaya splain-approksimatsiya funktsii mnogikh peremennykh i $B$-prostranstva”, Algebra i analiz, 4:4 (1992), 45–79 | MR | Zbl

[4] V. K. Dzyadyk, Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | MR | Zbl

[5] E. M. Dynkin, “Konstruktivnaya kharakteristika klassov S. L. Soboleva i O. V. Besova”, Spektralnaya teoriya funktsii i operatorov, Sbornik statei, v. II, Tr. MIAN SSSR, 155, 1981, 41–76 | MR | Zbl

[6] A. C. Rotkevich, “Formula Aizenberga v nevypuklykh oblastyakh i nekotorye eë prilozheniya”, Zap. nauchn. semin. POMI, 389, 2011, 206–231

[7] A. C. Rotkevich, “Integral Koshi–Lere–Fantappe v lineino vypuklykh oblastyakh”, Zap. nauchn. semin. POMI, 401, 2012, 172–188 | MR

[8] G. G. Khardi, Dzh. I. Litlvud, D. Poia, Neravenstva, IL, M., 1948

[9] N. A. Shirokov, “Pryamaya teorema v strogo vypukloi oblasti v $\mathbb C^n$”, Zap. nauchn. semin. POMI, 206, 1993, 152–175

[10] N. A. Shirokov, “Ravnomernye polinomialnye priblizheniya v vypuklykh oblastyakh v $\mathbb C^n$”, Zap. nauchn. semin. POMI, 333, 2006, 98–112 | MR | Zbl

[11] K. Adachi, Several complex variables and integral formulas, World Scientific, 2007 | MR

[12] F. Beatrous (Jr.), “Estimates for extensions of holomorphic functions”, Michigan Math. J., 32 (1985), 361–380 | DOI | MR | Zbl

[13] Bloom T. et al., Polynomial interpolation and approximation in $\mathbb C^d$, 2011, arXiv: 1111.6418

[14] C. Fefferman, E. M. Stein, “$H^p$ spaces of several variables”, Acta Math., 129:1 (1972), 137–193 | DOI | MR | Zbl

[15] J. Leray, “Le calcul différentiel et intégral sur une variété analytique complexe. (Problème de Cauchy. III)”, Bulletin de la Société mathématique de France, 87 (1959), 81–180 | MR | Zbl

[16] N. Levenberg, “Approximation in $\mathbb C^N$”, Surv. Appr. Theory, 2 (2006), 92–140 | MR | Zbl

[17] R. M. Range, Holomorphic functions and integral representations in several complex variables, Springer-Verlag, 1986 | MR | Zbl

[18] W. Rudin, Function theory in the unit ball of $\mathbb C^d$, Springer-Verlag, 1980 | MR | Zbl

[19] M. Simon Salamon, “Hermitian geometry”, Invitations to Geometry and Topology, Oxf. Grad. Texts Math., 7, 2002, 233–291 | MR | Zbl

[20] N. A. Shirokov, “Jackson–Bernstein theorem in strictly pseudoconvex domains in $\mathbb C^n$”, Constructive Approximation, 5:1 (1989), 455–461 | DOI | MR | Zbl

[21] E. L. Stout, “$H^p$-functions on strictly pseudoconvex domains”, Amer. J. Math., 98:3, (Autumn, 1976), 821–852 | DOI | MR | Zbl

[22] H. Triebel, Theory of function spaces, v. III, Birkhauser, Basel, 2006 | MR | Zbl