Constructive description of the Besov classes in convex domains in $\mathbb C^d$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 41, Tome 416 (2013), pp. 136-174

Voir la notice de l'article provenant de la source Math-Net.Ru

The method of pseudoanalytic continuation developed by E. M. Dyn'kin is extended to convex domains in $\mathbb C^d$ and is used to give a constructive description of the Besov classes in such domains.
@article{ZNSL_2013_416_a8,
     author = {A. S. Rotkevich},
     title = {Constructive description of the {Besov} classes in convex domains in $\mathbb C^d$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {136--174},
     publisher = {mathdoc},
     volume = {416},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_416_a8/}
}
TY  - JOUR
AU  - A. S. Rotkevich
TI  - Constructive description of the Besov classes in convex domains in $\mathbb C^d$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 136
EP  - 174
VL  - 416
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_416_a8/
LA  - ru
ID  - ZNSL_2013_416_a8
ER  - 
%0 Journal Article
%A A. S. Rotkevich
%T Constructive description of the Besov classes in convex domains in $\mathbb C^d$
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 136-174
%V 416
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_416_a8/
%G ru
%F ZNSL_2013_416_a8
A. S. Rotkevich. Constructive description of the Besov classes in convex domains in $\mathbb C^d$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 41, Tome 416 (2013), pp. 136-174. http://geodesic.mathdoc.fr/item/ZNSL_2013_416_a8/