@article{ZNSL_2013_416_a6,
author = {N. N. Osipov},
title = {Littlewood{\textendash}Paley{\textendash}Rubio de {Francia} inequality in {Morrey{\textendash}Campanato} spaces: an announcement},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {117--123},
year = {2013},
volume = {416},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_416_a6/}
}
N. N. Osipov. Littlewood–Paley–Rubio de Francia inequality in Morrey–Campanato spaces: an announcement. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 41, Tome 416 (2013), pp. 117-123. http://geodesic.mathdoc.fr/item/ZNSL_2013_416_a6/
[1] S. V. Kislyakov, “Teorema Litlvuda–Peli dlya proizvolnykh intervalov: vesovye otsenki”, Zap. nauchn. semin. POMI, 355, 2008, 180–198 | MR | Zbl
[2] S. V. Kislyakov, D. V. Parilov, “O teoreme Litlvuda–Peli dlya proizvolnykh intervalov”, Zap. nauchn. semin. POMI, 327, 2005, 98–114 | MR | Zbl
[3] J. Bourgain, “On square functions on the trigonometric system”, Bull. Soc. Math. Belg., 37:1 (1985), 20–26 | MR | Zbl
[4] S. Campanato, “Proprietà di hölderianità di alcune classi di funzioni”, Ann. Scuola Norm. Sup. Pisa, 17 (1963), 175–188 | MR | Zbl
[5] Ronald A. DeVore, Robert C. Sharpley, Maximal functions measuring smoothness, Mem. of the Amer. Math. Soc., 47, no. 293, 1984 | MR | Zbl
[6] P. L. Duren, B. W. Romberg, A. L. Shields, “Linear functionals on $H^p$ spaces with $0
1$”, J. reine angew. Math., 238 (1969), 32–60 | MR | Zbl[7] C. Fefferman, E. M. Stein, “$H^p$ spaces of several variables”, Acta Math., 129 (1972), 137–193 | DOI | MR | Zbl
[8] Sergey Kislyakov, Natan Kruglyak, Extremal Problems in Interpolation Theory, Whitney-Besicovitch Coverings, and Singular Integrals, Monografie Matematyczne Instytut Matematyczny PAN (New Series), 74, Birkhäuser, 2013 | MR | Zbl
[9] G. N. Meyers, “Mean oscillation over cubes and Hölder continuity”, Proc. Amer. Math. Soc., 15 (1964), 717–721 | MR | Zbl
[10] Nikolay N. Osipov, Littlewood–Paley–Rubio de Francia inequality in Morrey–Campanato spaces, arXiv: 1211.0696
[11] José L. Rubio de Francia, “A Littlewood–Paley inequality for arbitrary intervals”, Rev. Mat. Iberoamer., 1:2 (1985), 1–14 | MR | Zbl
[12] Elias M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton, New Jersey, 1993 | MR