Littlewood--Paley--Rubio de Francia inequality in Morrey--Campanato spaces: an announcement
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 41, Tome 416 (2013), pp. 117-123
Voir la notice de l'article provenant de la source Math-Net.Ru
A one-sided Littlewood–Paley-type $L^p$-inequality, $2\leq p\infty$, for arbitrary intervals was proved in 1983 by Rubio de Francia. By a refinement of his methods, it is possible to prove an analog of this inequality for “exponents beyond infinity”, i.e., for BMO and Hölder classes.
@article{ZNSL_2013_416_a6,
author = {N. N. Osipov},
title = {Littlewood--Paley--Rubio de {Francia} inequality in {Morrey--Campanato} spaces: an announcement},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {117--123},
publisher = {mathdoc},
volume = {416},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_416_a6/}
}
TY - JOUR AU - N. N. Osipov TI - Littlewood--Paley--Rubio de Francia inequality in Morrey--Campanato spaces: an announcement JO - Zapiski Nauchnykh Seminarov POMI PY - 2013 SP - 117 EP - 123 VL - 416 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2013_416_a6/ LA - ru ID - ZNSL_2013_416_a6 ER -
N. N. Osipov. Littlewood--Paley--Rubio de Francia inequality in Morrey--Campanato spaces: an announcement. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 41, Tome 416 (2013), pp. 117-123. http://geodesic.mathdoc.fr/item/ZNSL_2013_416_a6/