@article{ZNSL_2013_416_a5,
author = {I. R. Kayumov and A. V. Kayumova},
title = {Convergence of the imaginary parts of simplest fractions in $L_p(\mathbb R)$ for $p<1$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {108--116},
year = {2013},
volume = {416},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_416_a5/}
}
TY - JOUR AU - I. R. Kayumov AU - A. V. Kayumova TI - Convergence of the imaginary parts of simplest fractions in $L_p(\mathbb R)$ for $p<1$ JO - Zapiski Nauchnykh Seminarov POMI PY - 2013 SP - 108 EP - 116 VL - 416 UR - http://geodesic.mathdoc.fr/item/ZNSL_2013_416_a5/ LA - ru ID - ZNSL_2013_416_a5 ER -
I. R. Kayumov; A. V. Kayumova. Convergence of the imaginary parts of simplest fractions in $L_p(\mathbb R)$ for $p<1$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 41, Tome 416 (2013), pp. 108-116. http://geodesic.mathdoc.fr/item/ZNSL_2013_416_a5/
[1] V. I. Danchenko, “Otsenki rasstoyanii ot polyusov logarifmicheskikh proizvodnykh mnogochlenov do pryamykh i okruzhnostei”, Matem. sb., 185:8 (1994), 63–80 | MR | Zbl
[2] P. A. Borodin, O. N. Kosukhin, “O priblizhenii naiprosteishimi drobyami na deistvitelnoi osi”, Vestn. Mosk. un-ta, Ser. 1. Matem., mekh., 2005, no. 1, 3–8 | MR | Zbl
[3] V. Yu. Protasov, “Priblizhenie naiprosteishimi drobyami i preobrazovanie Gilberta”, Izv. RAN, Ser. matem., 73:2 (2009), 123–140 | DOI | MR | Zbl
[4] I. R. Kayumov, “Skhodimost ryadov naiprosteishikh drobei v $L_p(\mathbb R)$”, Matem. sb., 202:10 (2011), 87–98 | DOI | MR | Zbl
[5] I. R. Kayumov, “Neobkhodimoe uslovie skhodimosti naiprosteishikh drobei v $L_p(\mathbb R)$”, Matem. zametki, 92:1 (2012), 149–152 | DOI | Zbl
[6] V. I. Danchenko, “O skhodimosti naiprosteishikh drobei v $L_p(\mathbb R)$”, Matem. sb., 201:7 (2010), 53–66 | DOI | MR | Zbl
[7] G. Khardi, D. Littlvud, G. Polia, Neravenstva, Izd-vo inostrannoi literatury, Moskva, 1948
[8] S. B. Stechkin, “Ob absolyutnoi skhodimosti ortogonalnykh ryadov”, Dokl. AN SSSR, 102:1 (1955), 37–40 | Zbl