Convergence of the imaginary parts of simplest fractions in $L_p(\mathbb R)$ for $p1$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 41, Tome 416 (2013), pp. 108-116

Voir la notice de l'article provenant de la source Math-Net.Ru

For $p\in(1/2,1)$, the $L_p(\mathbb R)$-convergence of the series $\sum_{k=1}^\infty|\operatorname{Im}(t-z_k)^{-1}|$ is studied, where the $z_k$ are some points on the complex plane. The problem is solved completely in the case where the sequence $\{\operatorname{Re}z_k\}$ has no limit points. Also, the case where this sequence has finitely many limit points is studied.
@article{ZNSL_2013_416_a5,
     author = {I. R. Kayumov and A. V. Kayumova},
     title = {Convergence of the imaginary parts of simplest fractions in $L_p(\mathbb R)$ for $p<1$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {108--116},
     publisher = {mathdoc},
     volume = {416},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_416_a5/}
}
TY  - JOUR
AU  - I. R. Kayumov
AU  - A. V. Kayumova
TI  - Convergence of the imaginary parts of simplest fractions in $L_p(\mathbb R)$ for $p<1$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 108
EP  - 116
VL  - 416
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_416_a5/
LA  - ru
ID  - ZNSL_2013_416_a5
ER  - 
%0 Journal Article
%A I. R. Kayumov
%A A. V. Kayumova
%T Convergence of the imaginary parts of simplest fractions in $L_p(\mathbb R)$ for $p<1$
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 108-116
%V 416
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_416_a5/
%G ru
%F ZNSL_2013_416_a5
I. R. Kayumov; A. V. Kayumova. Convergence of the imaginary parts of simplest fractions in $L_p(\mathbb R)$ for $p<1$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 41, Tome 416 (2013), pp. 108-116. http://geodesic.mathdoc.fr/item/ZNSL_2013_416_a5/