Convergence of the imaginary parts of simplest fractions in $L_p(\mathbb R)$ for $p1$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 41, Tome 416 (2013), pp. 108-116 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For $p\in(1/2,1)$, the $L_p(\mathbb R)$-convergence of the series $\sum_{k=1}^\infty|\operatorname{Im}(t-z_k)^{-1}|$ is studied, where the $z_k$ are some points on the complex plane. The problem is solved completely in the case where the sequence $\{\operatorname{Re}z_k\}$ has no limit points. Also, the case where this sequence has finitely many limit points is studied.
@article{ZNSL_2013_416_a5,
     author = {I. R. Kayumov and A. V. Kayumova},
     title = {Convergence of the imaginary parts of simplest fractions in $L_p(\mathbb R)$ for $p<1$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {108--116},
     year = {2013},
     volume = {416},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_416_a5/}
}
TY  - JOUR
AU  - I. R. Kayumov
AU  - A. V. Kayumova
TI  - Convergence of the imaginary parts of simplest fractions in $L_p(\mathbb R)$ for $p<1$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 108
EP  - 116
VL  - 416
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_416_a5/
LA  - ru
ID  - ZNSL_2013_416_a5
ER  - 
%0 Journal Article
%A I. R. Kayumov
%A A. V. Kayumova
%T Convergence of the imaginary parts of simplest fractions in $L_p(\mathbb R)$ for $p<1$
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 108-116
%V 416
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_416_a5/
%G ru
%F ZNSL_2013_416_a5
I. R. Kayumov; A. V. Kayumova. Convergence of the imaginary parts of simplest fractions in $L_p(\mathbb R)$ for $p<1$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 41, Tome 416 (2013), pp. 108-116. http://geodesic.mathdoc.fr/item/ZNSL_2013_416_a5/

[1] V. I. Danchenko, “Otsenki rasstoyanii ot polyusov logarifmicheskikh proizvodnykh mnogochlenov do pryamykh i okruzhnostei”, Matem. sb., 185:8 (1994), 63–80 | MR | Zbl

[2] P. A. Borodin, O. N. Kosukhin, “O priblizhenii naiprosteishimi drobyami na deistvitelnoi osi”, Vestn. Mosk. un-ta, Ser. 1. Matem., mekh., 2005, no. 1, 3–8 | MR | Zbl

[3] V. Yu. Protasov, “Priblizhenie naiprosteishimi drobyami i preobrazovanie Gilberta”, Izv. RAN, Ser. matem., 73:2 (2009), 123–140 | DOI | MR | Zbl

[4] I. R. Kayumov, “Skhodimost ryadov naiprosteishikh drobei v $L_p(\mathbb R)$”, Matem. sb., 202:10 (2011), 87–98 | DOI | MR | Zbl

[5] I. R. Kayumov, “Neobkhodimoe uslovie skhodimosti naiprosteishikh drobei v $L_p(\mathbb R)$”, Matem. zametki, 92:1 (2012), 149–152 | DOI | Zbl

[6] V. I. Danchenko, “O skhodimosti naiprosteishikh drobei v $L_p(\mathbb R)$”, Matem. sb., 201:7 (2010), 53–66 | DOI | MR | Zbl

[7] G. Khardi, D. Littlvud, G. Polia, Neravenstva, Izd-vo inostrannoi literatury, Moskva, 1948

[8] S. B. Stechkin, “Ob absolyutnoi skhodimosti ortogonalnykh ryadov”, Dokl. AN SSSR, 102:1 (1955), 37–40 | Zbl