Entire functions that have the smallest deviation from zero with respect to the uniform norm with weight
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 41, Tome 416 (2013), pp. 98-107 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

P. L. Chebyshev solved the problem of finding a polynomial of degree $n$ with leading coefficient one that has the smallest deviation from zero with respect to the maximum norm. A similar problem can be solved for some classes of entire functions. We find the entire function of exponential type $\sigma$ such that for any nonzero entire function $Q$ of type less than $\sigma$ and of class $A$ we have $$ \sup_\mathbb R\left|\frac{f_\sigma-Q}{\rho_m}\right|>\sup_\mathbb R\left|\frac{f_\sigma}{\rho_m}\right|. $$
@article{ZNSL_2013_416_a4,
     author = {A. V. Gladkaya},
     title = {Entire functions that have the smallest deviation from zero with respect to the uniform norm with weight},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {98--107},
     year = {2013},
     volume = {416},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_416_a4/}
}
TY  - JOUR
AU  - A. V. Gladkaya
TI  - Entire functions that have the smallest deviation from zero with respect to the uniform norm with weight
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 98
EP  - 107
VL  - 416
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_416_a4/
LA  - ru
ID  - ZNSL_2013_416_a4
ER  - 
%0 Journal Article
%A A. V. Gladkaya
%T Entire functions that have the smallest deviation from zero with respect to the uniform norm with weight
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 98-107
%V 416
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_416_a4/
%G ru
%F ZNSL_2013_416_a4
A. V. Gladkaya. Entire functions that have the smallest deviation from zero with respect to the uniform norm with weight. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 41, Tome 416 (2013), pp. 98-107. http://geodesic.mathdoc.fr/item/ZNSL_2013_416_a4/

[1] N. I. Akhiezer, Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR | Zbl

[2] A. Kroo, F. Peherstorfer, “Asymptotic representation of weighted $L_\infty$- and $L_1$-minimal polynomials”, Math. Proc. Camb. Phil. Soc., 144 (2008), 241–254 | DOI | MR | Zbl

[3] B. Ya. Levin, Raspredelenie kornei tselykh funktsii, M., 1956

[4] B. Ya. Levin, Lectures on Entire Functions, AMS, 1996 | MR | Zbl

[5] I. I. Ibragimov, Teoriya priblizheniya tselymi funktsiyami, ELM, Baku, 1979 | MR