On entire solutions of exponential type of some implicit linear differential-difference equation in a Banach space
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 41, Tome 416 (2013), pp. 91-97 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $A$ be a closed linear operator on a Banach space with a possibly domain. Entire solutions of exponential type of the linear differential-difference equation $w'(z)=Aw(z-h)+f(z)$ are studied nondense. Assuming that operator $A$ has a bounded inverse, the well-posedness of this equation in a special space of entire $E$-valued function is proved.
@article{ZNSL_2013_416_a3,
     author = {S. L. Gefter and T. E. Stulova},
     title = {On entire solutions of exponential type of some implicit linear differential-difference equation in {a~Banach} space},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {91--97},
     year = {2013},
     volume = {416},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_416_a3/}
}
TY  - JOUR
AU  - S. L. Gefter
AU  - T. E. Stulova
TI  - On entire solutions of exponential type of some implicit linear differential-difference equation in a Banach space
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 91
EP  - 97
VL  - 416
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_416_a3/
LA  - ru
ID  - ZNSL_2013_416_a3
ER  - 
%0 Journal Article
%A S. L. Gefter
%A T. E. Stulova
%T On entire solutions of exponential type of some implicit linear differential-difference equation in a Banach space
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 91-97
%V 416
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_416_a3/
%G ru
%F ZNSL_2013_416_a3
S. L. Gefter; T. E. Stulova. On entire solutions of exponential type of some implicit linear differential-difference equation in a Banach space. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 41, Tome 416 (2013), pp. 91-97. http://geodesic.mathdoc.fr/item/ZNSL_2013_416_a3/

[1] S. G. Krein, Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967 | MR

[2] K. I. Engel, R. Nagel, One-parameter semigroups for linear evolution equations, Springer-Verlag, New York, 2000 | MR

[3] G. Da Prato, E. Sinestrati, “Differential operators with non dense domain”, Annali della scuola normale superiore Di Pisa, 14 (1987), 285–344 | MR | Zbl

[4] Yu. T. Silchenko, P. E. Sobolevskii, “Razreshimost zadachi Koshi dlya evolyutsionnogo uravneniya v banakhovom prostranstve s neplotno zadannym operatornym koeffitsientom, porozhdayuschim polugruppu s osobennostyu”, Sib. mat. zh., 27:4 (1986), 93–104 | MR | Zbl

[5] Yu. L. Daletskii, M. G. Krein, Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970 | MR

[6] S. L. Gefter, T. E. Stulova, “O korrektnosti nekotorogo nerezonansnogo operatorno-differentsialnogo uravneniya v prostranstve tselykh funktsii eksponentsialnogo tipa”, Doklady NAN Ukrainy, 9 (2012), 7–12 | Zbl

[7] M. L. Gorbachuk, “O analiticheskikh resheniyakh operatorno-differentsialnykh uravnenii”, Ukrainskii matematicheskii zhurnal, 52:5 (2000), 680–693 | MR | Zbl

[8] S. Gefter, T. Stulova, “On holomorphic solutions of some implicit linear differential equation in a Banach space”, Operator Theory: Advances and Applications, 191, Birkhäuser Verlag, Basel, Switzerland, 2009, 331–340 | MR | Zbl

[9] R. Bellman, K. Kuk, Differentsialno-raznostnye uravneniya, Mir, M., 1967 | MR | Zbl

[10] O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel, H. O. Walther, Delay equations, Springer-Verlag, New York, 1995 | MR | Zbl

[11] R. Datko, “Linear autonomous neutral differential equations in a Banach space”, J. Diff. Equations, 25 (1977), 258–274 | DOI | MR | Zbl

[12] Dzh. Kheil, Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984 | MR