@article{ZNSL_2013_416_a3,
author = {S. L. Gefter and T. E. Stulova},
title = {On entire solutions of exponential type of some implicit linear differential-difference equation in {a~Banach} space},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {91--97},
year = {2013},
volume = {416},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_416_a3/}
}
TY - JOUR AU - S. L. Gefter AU - T. E. Stulova TI - On entire solutions of exponential type of some implicit linear differential-difference equation in a Banach space JO - Zapiski Nauchnykh Seminarov POMI PY - 2013 SP - 91 EP - 97 VL - 416 UR - http://geodesic.mathdoc.fr/item/ZNSL_2013_416_a3/ LA - ru ID - ZNSL_2013_416_a3 ER -
%0 Journal Article %A S. L. Gefter %A T. E. Stulova %T On entire solutions of exponential type of some implicit linear differential-difference equation in a Banach space %J Zapiski Nauchnykh Seminarov POMI %D 2013 %P 91-97 %V 416 %U http://geodesic.mathdoc.fr/item/ZNSL_2013_416_a3/ %G ru %F ZNSL_2013_416_a3
S. L. Gefter; T. E. Stulova. On entire solutions of exponential type of some implicit linear differential-difference equation in a Banach space. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 41, Tome 416 (2013), pp. 91-97. http://geodesic.mathdoc.fr/item/ZNSL_2013_416_a3/
[1] S. G. Krein, Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967 | MR
[2] K. I. Engel, R. Nagel, One-parameter semigroups for linear evolution equations, Springer-Verlag, New York, 2000 | MR
[3] G. Da Prato, E. Sinestrati, “Differential operators with non dense domain”, Annali della scuola normale superiore Di Pisa, 14 (1987), 285–344 | MR | Zbl
[4] Yu. T. Silchenko, P. E. Sobolevskii, “Razreshimost zadachi Koshi dlya evolyutsionnogo uravneniya v banakhovom prostranstve s neplotno zadannym operatornym koeffitsientom, porozhdayuschim polugruppu s osobennostyu”, Sib. mat. zh., 27:4 (1986), 93–104 | MR | Zbl
[5] Yu. L. Daletskii, M. G. Krein, Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970 | MR
[6] S. L. Gefter, T. E. Stulova, “O korrektnosti nekotorogo nerezonansnogo operatorno-differentsialnogo uravneniya v prostranstve tselykh funktsii eksponentsialnogo tipa”, Doklady NAN Ukrainy, 9 (2012), 7–12 | Zbl
[7] M. L. Gorbachuk, “O analiticheskikh resheniyakh operatorno-differentsialnykh uravnenii”, Ukrainskii matematicheskii zhurnal, 52:5 (2000), 680–693 | MR | Zbl
[8] S. Gefter, T. Stulova, “On holomorphic solutions of some implicit linear differential equation in a Banach space”, Operator Theory: Advances and Applications, 191, Birkhäuser Verlag, Basel, Switzerland, 2009, 331–340 | MR | Zbl
[9] R. Bellman, K. Kuk, Differentsialno-raznostnye uravneniya, Mir, M., 1967 | MR | Zbl
[10] O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel, H. O. Walther, Delay equations, Springer-Verlag, New York, 1995 | MR | Zbl
[11] R. Datko, “Linear autonomous neutral differential equations in a Banach space”, J. Diff. Equations, 25 (1977), 258–274 | DOI | MR | Zbl
[12] Dzh. Kheil, Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984 | MR