On entire solutions of exponential type of some implicit linear differential-difference equation in a~Banach space
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 41, Tome 416 (2013), pp. 91-97

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a closed linear operator on a Banach space with a possibly domain. Entire solutions of exponential type of the linear differential-difference equation $w'(z)=Aw(z-h)+f(z)$ are studied nondense. Assuming that operator $A$ has a bounded inverse, the well-posedness of this equation in a special space of entire $E$-valued function is proved.
@article{ZNSL_2013_416_a3,
     author = {S. L. Gefter and T. E. Stulova},
     title = {On entire solutions of exponential type of some implicit linear differential-difference equation in {a~Banach} space},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {91--97},
     publisher = {mathdoc},
     volume = {416},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_416_a3/}
}
TY  - JOUR
AU  - S. L. Gefter
AU  - T. E. Stulova
TI  - On entire solutions of exponential type of some implicit linear differential-difference equation in a~Banach space
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 91
EP  - 97
VL  - 416
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_416_a3/
LA  - ru
ID  - ZNSL_2013_416_a3
ER  - 
%0 Journal Article
%A S. L. Gefter
%A T. E. Stulova
%T On entire solutions of exponential type of some implicit linear differential-difference equation in a~Banach space
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 91-97
%V 416
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_416_a3/
%G ru
%F ZNSL_2013_416_a3
S. L. Gefter; T. E. Stulova. On entire solutions of exponential type of some implicit linear differential-difference equation in a~Banach space. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 41, Tome 416 (2013), pp. 91-97. http://geodesic.mathdoc.fr/item/ZNSL_2013_416_a3/