The property $\log(f)\in BMO(\mathbb R^n)$ in terms of the Riesz transformations
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 41, Tome 416 (2013), pp. 59-69
Cet article a éte moissonné depuis la source Math-Net.Ru
The condition mentioned in the title is equivalent to the representability of $f$ as a quotient $f=v_1/v_2$ where $v_1$ and $v_2$ obey the inequality $|R_jv_i|\le cv_i$, $i=1,2$, $j=1,\ldots,n$. Here $R_1,\ldots,R_n$ are the Riesz transformations.
@article{ZNSL_2013_416_a1,
author = {I. M. Vasilyev},
title = {The property $\log(f)\in BMO(\mathbb R^n)$ in terms of the {Riesz} transformations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {59--69},
year = {2013},
volume = {416},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_416_a1/}
}
I. M. Vasilyev. The property $\log(f)\in BMO(\mathbb R^n)$ in terms of the Riesz transformations. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 41, Tome 416 (2013), pp. 59-69. http://geodesic.mathdoc.fr/item/ZNSL_2013_416_a1/
[1] J. Garcia-Cuerva, J. L. Rubio de Francia, Weigthed norm inequalities and related topics, North-Holland, 1985 | MR | Zbl
[2] S. V. Kislyakov, T. W. Gamelin, “Uniform algebras as Banach spaces”, Handbook of Banach Spaces, v. I, eds. W. B. Johnson, J. Lindedstrauss, Elsevier Science, 2001, 671–706 | MR | Zbl
[3] U. Kheiman, P. Kennedi, Subgarmonicheskie funktsii, Mir, M., 1980