On inscribed and circumscribed polyhedra for a centrally symmetric convex body
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 12, Tome 415 (2013), pp. 54-61 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We construct new polyhedra with the property that some of their similar or affine images can be inscribed in (or circumscribed about) every centrally symmetric convex body. One of the theorems is as follows. If a three-dimensional body $K$ is centrally symmetric and convex, then either an affine image of the regular dodecahedron is inscribed in $K$, or there are two affine images $D_1$ and $D_2$ of the regular dodecahedron such that nine pairs of opposite vertices of $D_i$, $i=1,2$, lie on the boundary of $K$. Furthermore, the two remaining vertices of $D_1$ lie outside $K$, while the two remaining vertices of $D_2$ lie inside $K$.
@article{ZNSL_2013_415_a8,
     author = {V. V. Makeev and N. Yu. Netsvetaev},
     title = {On inscribed and circumscribed polyhedra for a~centrally symmetric convex body},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {54--61},
     year = {2013},
     volume = {415},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_415_a8/}
}
TY  - JOUR
AU  - V. V. Makeev
AU  - N. Yu. Netsvetaev
TI  - On inscribed and circumscribed polyhedra for a centrally symmetric convex body
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 54
EP  - 61
VL  - 415
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_415_a8/
LA  - ru
ID  - ZNSL_2013_415_a8
ER  - 
%0 Journal Article
%A V. V. Makeev
%A N. Yu. Netsvetaev
%T On inscribed and circumscribed polyhedra for a centrally symmetric convex body
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 54-61
%V 415
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_415_a8/
%G ru
%F ZNSL_2013_415_a8
V. V. Makeev; N. Yu. Netsvetaev. On inscribed and circumscribed polyhedra for a centrally symmetric convex body. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 12, Tome 415 (2013), pp. 54-61. http://geodesic.mathdoc.fr/item/ZNSL_2013_415_a8/

[1] L. F. Tot, Raspolozheniya na ploskosti, na sfere i v prostranstve, Fizmatgiz, M., 1958

[2] B. Grünbaum, “Affine-regular polygons inscribed in plane convex sets”, Riveon Lematimatika, 13 (1959), 20–24 | MR

[3] V. V. Makeev, “Zadacha Knastera i pochti sfericheskie secheniya”, Mat. sb., 180:3 (1989), 424–431 | MR | Zbl

[4] T. Hausel, E. Makai, A. Szücz, “Inscribing cubes and covering by rhombic dodecahedra via equivariant topology”, Mathematika, 47:1–2 (2000), 371–397 | DOI | MR | Zbl

[5] H. Griffiths, “The topology of square pegs in round holes”, Proc. London Math. Soc., 62:3 (1991), 647–672 | DOI | MR | Zbl

[6] V. V. Makeev, “Trëkhmernye mnogogranniki, vpisannye i opisannye vokrug vypuklykh kompaktov”, Algebra i analiz, 12:4 (2000), 1–15 | MR | Zbl

[7] V. V. Makeev, “O nekotorykh geometricheskikh svoistvakh vypuklykh tel”, Algebra i analiz, 14:5 (2002), 96–109 | MR | Zbl

[8] V. V. Makeev, “Trëkhmernye mnogogranniki, vpisannye i opisannye vokrug vypuklykh kompaktov. II”, Algebra i analiz, 13:5 (2001), 110–133 | MR | Zbl

[9] V. V. Makeev, “O nekotorykh geometricheskikh svoistvakh vypuklykh tel. II”, Algebra i analiz, 15:6 (2003), 74–85 | MR | Zbl

[10] V. V. Makeev, “O geometrii konechnomernykh normirovannykh prostranstv i nepreryvnykh funktsiyakh na sfere v evklidovom prostranstve”, Zap. nauchn. semin. POMI, 329, 2005, 107–117 | MR | Zbl

[11] V. V. Makeev, “Vpisannye i opisannye mnogogranniki dlya vypuklogo tela i zadacha o nepreryvnykh funktsiyakh na sfere v evklidovom prostranstve”, Algebra i analiz, 18:6 (2006), 187–204 | MR | Zbl