Triangular and quadrangular pyramids in a three-dimensional normed space
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 12, Tome 415 (2013), pp. 42-50
Cet article a éte moissonné depuis la source Math-Net.Ru
The main results are as follows. Every three-dimensional real normed space contains an isometrically embedded set of vertices of a Euclidean tetrahedron whenever the ratio of lengths for each pair of edges of the tetrahedron is $\ge(\sqrt{8/3}+1)/3<0.878$. Every three-dimensional normed space contains an affine image of a regular quadrangular pyramid having lateral edges of equal length, base edges of equal length, and base diagonals of equal length, having a predetermined ratio $>\sqrt{2/3}$ of the length of the lateral edge to the length of the base edge.
@article{ZNSL_2013_415_a6,
author = {V. V. Makeev},
title = {Triangular and quadrangular pyramids in a~three-dimensional normed space},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {42--50},
year = {2013},
volume = {415},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_415_a6/}
}
V. V. Makeev. Triangular and quadrangular pyramids in a three-dimensional normed space. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 12, Tome 415 (2013), pp. 42-50. http://geodesic.mathdoc.fr/item/ZNSL_2013_415_a6/
[1] C. Petty, “Equilateral sets in Minkovski spaces”, Proc. Amer. Math. Soc., 27 (1971), 369–374 | DOI | MR
[2] V. V. Makeev, “O piramidakh v trekhmernom normirovannom prostranstve”, Zap. nauchn. semin. POMI, 353, 2008, 132–138 | MR | Zbl
[3] V. V. Makeev, “Ploskie secheniya vypuklykh tel i universalnye rassloeniya”, Zap. nauchn. semin. POMI, 280, 2001, 219–233 | MR | Zbl
[4] L. G. Shnirelman, “O nekotorykh geometricheskikh svoistvakh zamknutykh krivykh”, Uspekhi mat. nauk, 1944, no. 10, 34–44 | MR | Zbl
[5] V. V. Makeev, “Trekhmernye mnogogranniki, vpisannye i opisannye vokrug vypuklykh kompaktov. II”, Algebra i analiz, 13:5 (2001), 110–133 | MR | Zbl