On affine diameters of a convex body
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 12, Tome 415 (2013), pp. 39-41 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is proved that any convex body in $\mathbb R^n$ has $n$ mutually orthogonal affine diameters $d_1,\dots,d_n$ such that it is possible to shift each of them through a linear combination of direction vectors of the diameters with smaller numbers so that their translates will intersect at their common middle point.
@article{ZNSL_2013_415_a5,
     author = {V. V. Makeev and M. Yu. Zvagel'skii},
     title = {On affine diameters of a~convex body},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {39--41},
     year = {2013},
     volume = {415},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_415_a5/}
}
TY  - JOUR
AU  - V. V. Makeev
AU  - M. Yu. Zvagel'skii
TI  - On affine diameters of a convex body
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 39
EP  - 41
VL  - 415
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_415_a5/
LA  - ru
ID  - ZNSL_2013_415_a5
ER  - 
%0 Journal Article
%A V. V. Makeev
%A M. Yu. Zvagel'skii
%T On affine diameters of a convex body
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 39-41
%V 415
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_415_a5/
%G ru
%F ZNSL_2013_415_a5
V. V. Makeev; M. Yu. Zvagel'skii. On affine diameters of a convex body. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 12, Tome 415 (2013), pp. 39-41. http://geodesic.mathdoc.fr/item/ZNSL_2013_415_a5/

[1] B. Gryunbaum, Etyudy po kombinatornoi geometrii i teorii vypuklykh tel, Nauka, M., 1971 | MR

[2] V. V. Makeev, “Spetsialnye konfiguratsii ploskostei, svyazannye s vypuklym kompaktom”, Zap. nauchn. semin. POMI, 252, 1998, 165–174 | MR | Zbl

[3] V. V. Makeev, “Ob affinnykh diametrakh i khordakh vypuklykh kompaktov”, Zap. nauchn. semin. POMI, 299, 2003, 252–261 | MR | Zbl

[4] V. V. Makeev, “O peresecheniyakh affinnykh diametrov vypuklogo tela”, Ukr. geom. sb., 33 (1990), 70–73 | MR | Zbl

[5] V. P. Soltan, “Affine diameters of convex bodies”, Survey Exp. Math., 23:1 (2005), 47–63 | DOI | MR | Zbl