Atiyah–Patodi–Singer $\eta$-invariant and invariants of finite degree
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 12, Tome 415 (2013), pp. 163-193 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the problem of computing the degree of invariants of the form $\eta\bmod A$, where $\eta$ is the Atiyah–Patodi–Singer invariant considered on smooth compact oriented three-dimensional submanifolds of $\mathbb R^n$ and $A$ is an additive subgroup of $\mathbb R$. We use the functional definition of invariants of finite degree. (A similar approach is used in the paper “Quadratic property of the rational semicharacteristic” by S. S. Podkorytov.) The main results are as follows. If $1\notin A$, the degree is infinite. If $\frac13\in A$, the degree equals one.
@article{ZNSL_2013_415_a15,
     author = {A. N. Trefilov},
     title = {Atiyah{\textendash}Patodi{\textendash}Singer $\eta$-invariant and invariants of finite degree},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {163--193},
     year = {2013},
     volume = {415},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_415_a15/}
}
TY  - JOUR
AU  - A. N. Trefilov
TI  - Atiyah–Patodi–Singer $\eta$-invariant and invariants of finite degree
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 163
EP  - 193
VL  - 415
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_415_a15/
LA  - ru
ID  - ZNSL_2013_415_a15
ER  - 
%0 Journal Article
%A A. N. Trefilov
%T Atiyah–Patodi–Singer $\eta$-invariant and invariants of finite degree
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 163-193
%V 415
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_415_a15/
%G ru
%F ZNSL_2013_415_a15
A. N. Trefilov. Atiyah–Patodi–Singer $\eta$-invariant and invariants of finite degree. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 12, Tome 415 (2013), pp. 163-193. http://geodesic.mathdoc.fr/item/ZNSL_2013_415_a15/

[1] M. F. Atiyah, V. K. Patodi, I. M. Singer, “Spectral asymmetry and Riemannian geometry. I”, Math. Proc. Camb. Philos. Soc., 77 (1975), 43–69 | DOI | MR | Zbl

[2] M. F. Atya, I. M. Zinger, “Indeks ellipticheskikh operatorov. III”, Usp. mat. nauk, 24:1 (1969), 127–182 | MR | Zbl

[3] U. Bunke, “On the gluing problem for the $\eta$-invariant”, J. Diff. Geom., 41 (1995), 397–448 | MR | Zbl

[4] Sh. Kobayasi, K. Nomidzu, Osnovy differentsialnoi geometrii, v. II, Nauka, M., 1981

[5] M. Komuro, “On Atiyah–Patodi–Singer $\eta$-invariant for $S^1$-bundles over Riemann surfaces”, J. Fac. Sci., Univ. Tokyo Sect. I A, 30 (1984), 525–548 | MR | Zbl

[6] R. Mandelbaum, Chetyrekhmernaya topologiya, Mir, M., 1981 | MR | Zbl

[7] W. S. Massey, A basic course in algebraic topology, Graduate Texts Math., 127, Springer, Berlin, 1991 | MR | Zbl

[8] Dzh. Milnor, Dzh. Stashef, Kharakteristicheskie klassy, Mir, M., 1979 | MR

[9] S. S. Podkorytov, “Kvadratichnoe svoistvo ratsionalnoi polukharakteristiki”, Zap. nauchn. semin. POMI, 267, 2000, 241–259 | MR | Zbl

[10] V. A. Zapolskii, “Funktsionalnaya kharakterizatsiya invariantov Vasileva”, Zap. nauchn. semin. POMI, 353, 2008, 39–53 | MR | Zbl