Cycles of the hyperbolic plane of positive curvature
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 12, Tome 415 (2013), pp. 137-162 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Properties of hyperbolic and elliptic cycles of the hyperbolic plane $\widehat H$ of positive curvature are investigated. An analog of Pythagorean theorem for a right trivertex with a parabolic hypotenuse is proved. For each type of straight lines, formulas expressing the length of a chord of a hyperbolic cycle in terms of the cycle radius, the measure of the central angle corresponding to the chord, and the radius of curvature of $\widehat H$ are obtained. The plane $\widehat H$ is considered in projective interpretation.
@article{ZNSL_2013_415_a14,
     author = {L. N. Romakina},
     title = {Cycles of the hyperbolic plane of positive curvature},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {137--162},
     year = {2013},
     volume = {415},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_415_a14/}
}
TY  - JOUR
AU  - L. N. Romakina
TI  - Cycles of the hyperbolic plane of positive curvature
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 137
EP  - 162
VL  - 415
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_415_a14/
LA  - ru
ID  - ZNSL_2013_415_a14
ER  - 
%0 Journal Article
%A L. N. Romakina
%T Cycles of the hyperbolic plane of positive curvature
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 137-162
%V 415
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_415_a14/
%G ru
%F ZNSL_2013_415_a14
L. N. Romakina. Cycles of the hyperbolic plane of positive curvature. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 12, Tome 415 (2013), pp. 137-162. http://geodesic.mathdoc.fr/item/ZNSL_2013_415_a14/

[1] B. A. Rozenfeld, Neevklidovy prostranstva, Nauka, M., 1969 | MR

[2] L. N. Romakina, “Ovalnye linii giperbolicheskoi ploskosti polozhitelnoi krivizny”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 12:3 (2012), 37–44

[3] L. N. Romakina, “Razbieniya giperbolicheskoi ploskosti polozhitelnoi krivizny, porozhdennye pravilnym $n$-konturom”, Teoriya otnositelnosti, gravitatsiya i geometriya, Mezhd. konf. “Petrov 2010 Anniversary Sympozium on General Relativity and Gravitation” (Kazan, 1–6 noyabrya 2010 g.), Trudy, Kazan. un-t, Kazan, 2010, 227–232

[4] L. N. Romakina, “Analog mozaiki na giperbolicheskoi ploskosti polozhitelnoi krivizny”, Mekhanika. Matematika, Sb. nauch. tr., Izd-vo Sarat. un-ta, Saratov, 2010, 69–72

[5] L. N. Romakina, “Prostye razbieniya giperbolicheskoi ploskosti polozhitelnoi krivizny, porozhdennye $h$-lomanoi”, Matematika, Sovremennye problemy matematiki i mekhaniki, VI, no. 3, Izd-vo MGU, M., 2011, 131–138

[6] L. N. Romakina, “Prostye razbieniya giperbolicheskoi ploskosti polozhitelnoi krivizny”, Matem. sb., 203:9 (2012), 83–116 | DOI | MR | Zbl

[7] L. N. Romakina, Geometrii koevklidovoi i kopsevdoevklidovoi ploskostei, Izd-vo “Nauchnaya kniga”, Saratov, 2008

[8] L. N. Romakina, “Opredelenie luchei, otrezkov i kvaziotrezkov razlichnogo tipa pryamykh pri postroenii klassicheskikh neevklidovykh geometrii na modelyakh Keli–Kleina”, Mezhdun. konferentsiya “62-e Gertsenovskie chteniya”, Sb. nauch. tr., Izd-vo RGPU im. A. I. Gertsena, Sankt-Peterburg, 2009, 103–109

[9] L. N. Romakina, “Konechnye zamknutye $5$-kontury rasshirennoi giperbolicheskoi ploskosti”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 11:1 (2011), 38–49

[10] L. N. Romakina, “Konechnye zamknutye 3(4)-kontury rasshirennoi giperbolicheskoi ploskosti”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 10:3 (2010), 14–26

[11] L. N. Romakina, “Analogi funktsii Lobachevskogo dlya ugla parallelnosti na giperbolicheskoi ploskosti polozhitelnoi krivizny”, Sib. elektron. matem. izv., 10 (2013), 393–407