Cycles of the hyperbolic plane of positive curvature
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 12, Tome 415 (2013), pp. 137-162

Voir la notice de l'article provenant de la source Math-Net.Ru

Properties of hyperbolic and elliptic cycles of the hyperbolic plane $\widehat H$ of positive curvature are investigated. An analog of Pythagorean theorem for a right trivertex with a parabolic hypotenuse is proved. For each type of straight lines, formulas expressing the length of a chord of a hyperbolic cycle in terms of the cycle radius, the measure of the central angle corresponding to the chord, and the radius of curvature of $\widehat H$ are obtained. The plane $\widehat H$ is considered in projective interpretation.
@article{ZNSL_2013_415_a14,
     author = {L. N. Romakina},
     title = {Cycles of the hyperbolic plane of positive curvature},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {137--162},
     publisher = {mathdoc},
     volume = {415},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_415_a14/}
}
TY  - JOUR
AU  - L. N. Romakina
TI  - Cycles of the hyperbolic plane of positive curvature
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 137
EP  - 162
VL  - 415
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_415_a14/
LA  - ru
ID  - ZNSL_2013_415_a14
ER  - 
%0 Journal Article
%A L. N. Romakina
%T Cycles of the hyperbolic plane of positive curvature
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 137-162
%V 415
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_415_a14/
%G ru
%F ZNSL_2013_415_a14
L. N. Romakina. Cycles of the hyperbolic plane of positive curvature. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 12, Tome 415 (2013), pp. 137-162. http://geodesic.mathdoc.fr/item/ZNSL_2013_415_a14/