On homotopy invariants of finite degree
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 12, Tome 415 (2013), pp. 109-136 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $X$ and $Y$ be pointed topological spaces and let $V$ be an abelian group. By definition, a homotopy invariant $f\colon[X,Y]\to V$ has degree at most $r$ if there exists a homomorphism $l\colon\mathrm{Hom}(C_0(X^r),C_0(Y^r))\to V$ such that $f([a])=l(C_0(a^r))$ for all maps $a\colon X\to Y$. Here $C_0(a^r)\colon C_0(X^r)\to C_0(Y^r)$ is the homomorphism of the groups of unreduced zero-dimensional singular chains induced by the $r$th Cartesian power of $a$. Suppose that $X$ is a connected compact CW-complex and $Y$ is a nilpotent connected CW-complex with finitely generated homotopy groups. Then finite-degree homotopy invariants taking values in cyclic groups of prime orders distinguish homotopy classes of maps $X\to Y$. Several similar statements are shown to be false.
@article{ZNSL_2013_415_a13,
     author = {S. S. Podkorytov},
     title = {On homotopy invariants of finite degree},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {109--136},
     year = {2013},
     volume = {415},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_415_a13/}
}
TY  - JOUR
AU  - S. S. Podkorytov
TI  - On homotopy invariants of finite degree
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 109
EP  - 136
VL  - 415
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_415_a13/
LA  - ru
ID  - ZNSL_2013_415_a13
ER  - 
%0 Journal Article
%A S. S. Podkorytov
%T On homotopy invariants of finite degree
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 109-136
%V 415
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_415_a13/
%G ru
%F ZNSL_2013_415_a13
S. S. Podkorytov. On homotopy invariants of finite degree. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 12, Tome 415 (2013), pp. 109-136. http://geodesic.mathdoc.fr/item/ZNSL_2013_415_a13/

[1] M. N. Gusarov, “Ob $n$-ekvivalentnosti uzlov i invariantakh konechnoi stepeni”, Zap. nauchn. semin. POMI, 208, 1993, 152–173 | MR | Zbl

[2] A. Duadi, “Kompleksy Eilenberga–Makleina”, Matematika, 5:2 (1961), 11–19

[3] S. S. Podkorytov, “Ob otobrazheniyakh sfery v odnosvyaznoe prostranstvo”, Zap. nauchn. semin. POMI, 329, 2005, 159–194 | MR | Zbl

[4] S. S. Podkorytov, “Poryadok gomotopicheskogo invarianta v stabilnom sluchae”, Mat. sb., 202:8 (2011), 95–116 | DOI | MR | Zbl

[5] M. Arkowitz, G. Lupton, “On finiteness of subgroups of self-homotopy equivalences”, Contemp. Math., 181 (1995), 1–25 | DOI | MR | Zbl

[6] A. K. Bousfield, D. M. Kan, Homotopy limits, completions and localizations, Lect. Notes Math., 304, Springer–Verlag, 1972 | DOI | MR | Zbl

[7] A. Dress, “Operations in representation rings”, Proc. Symp. Pure Math., 21 (1971), 39–45 | DOI | MR | Zbl

[8] A. Hatcher, Algebraic topology, Camb. Univ. Press, Cambridge, 2002 | MR | Zbl

[9] M. Hovey, Model categories, Math. Surveys Monographs, 63, Amer. Math. Soc., Providence, 1999 | MR | Zbl

[10] J. F. Jardine, “Simplicial approximation”, Theory Appl. Categ., 12:2 (2004), 34–72 | MR | Zbl

[11] I. B. S. Passi, Group rings and their augmentation ideals, Lect. Notes Math., 715, Springer-Verlag, Berlin–Heidelberg–New York, 1979 | MR | Zbl

[12] B. E. Shipley, “Convergence of the homology spectral sequence of a cosimplicial space”, Amer. J. Math., 118:1 (1996), 179–207 | DOI | MR | Zbl