@article{ZNSL_2013_415_a13,
author = {S. S. Podkorytov},
title = {On homotopy invariants of finite degree},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {109--136},
year = {2013},
volume = {415},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_415_a13/}
}
S. S. Podkorytov. On homotopy invariants of finite degree. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 12, Tome 415 (2013), pp. 109-136. http://geodesic.mathdoc.fr/item/ZNSL_2013_415_a13/
[1] M. N. Gusarov, “Ob $n$-ekvivalentnosti uzlov i invariantakh konechnoi stepeni”, Zap. nauchn. semin. POMI, 208, 1993, 152–173 | MR | Zbl
[2] A. Duadi, “Kompleksy Eilenberga–Makleina”, Matematika, 5:2 (1961), 11–19
[3] S. S. Podkorytov, “Ob otobrazheniyakh sfery v odnosvyaznoe prostranstvo”, Zap. nauchn. semin. POMI, 329, 2005, 159–194 | MR | Zbl
[4] S. S. Podkorytov, “Poryadok gomotopicheskogo invarianta v stabilnom sluchae”, Mat. sb., 202:8 (2011), 95–116 | DOI | MR | Zbl
[5] M. Arkowitz, G. Lupton, “On finiteness of subgroups of self-homotopy equivalences”, Contemp. Math., 181 (1995), 1–25 | DOI | MR | Zbl
[6] A. K. Bousfield, D. M. Kan, Homotopy limits, completions and localizations, Lect. Notes Math., 304, Springer–Verlag, 1972 | DOI | MR | Zbl
[7] A. Dress, “Operations in representation rings”, Proc. Symp. Pure Math., 21 (1971), 39–45 | DOI | MR | Zbl
[8] A. Hatcher, Algebraic topology, Camb. Univ. Press, Cambridge, 2002 | MR | Zbl
[9] M. Hovey, Model categories, Math. Surveys Monographs, 63, Amer. Math. Soc., Providence, 1999 | MR | Zbl
[10] J. F. Jardine, “Simplicial approximation”, Theory Appl. Categ., 12:2 (2004), 34–72 | MR | Zbl
[11] I. B. S. Passi, Group rings and their augmentation ideals, Lect. Notes Math., 715, Springer-Verlag, Berlin–Heidelberg–New York, 1979 | MR | Zbl
[12] B. E. Shipley, “Convergence of the homology spectral sequence of a cosimplicial space”, Amer. J. Math., 118:1 (1996), 179–207 | DOI | MR | Zbl