Two-chord framings of maximal trees
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 12, Tome 415 (2013), pp. 91-102 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We found sufficient conditions for a finite connected graph to have a maximal tree with the following property. There are a numbering of edges, and an injective mapping of the set of all edges of the tree to the set of all pairs of different chords ($=$ edges of the graph not contained in the tree) such that for any pair of chords in the image of the mapping the cycles containing one chord from the pair and containing no other chords intersect along an edge in the preimage and, maybe, along other edges of the tree with smaller numbers. The problem of studying graphs possessing this property appeared in the process of studying the (isotopic) classification problem of embeddings of graphs in $3$-space.
@article{ZNSL_2013_415_a11,
     author = {Yu. V. Maslova and V. M. Nezhinskij},
     title = {Two-chord framings of maximal trees},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {91--102},
     year = {2013},
     volume = {415},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_415_a11/}
}
TY  - JOUR
AU  - Yu. V. Maslova
AU  - V. M. Nezhinskij
TI  - Two-chord framings of maximal trees
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 91
EP  - 102
VL  - 415
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_415_a11/
LA  - ru
ID  - ZNSL_2013_415_a11
ER  - 
%0 Journal Article
%A Yu. V. Maslova
%A V. M. Nezhinskij
%T Two-chord framings of maximal trees
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 91-102
%V 415
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_415_a11/
%G ru
%F ZNSL_2013_415_a11
Yu. V. Maslova; V. M. Nezhinskij. Two-chord framings of maximal trees. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 12, Tome 415 (2013), pp. 91-102. http://geodesic.mathdoc.fr/item/ZNSL_2013_415_a11/

[1] A. K. Zvonkin, S. K. Lando, Grafy na poverkhnostyakh i ikh prilozheniya, MTsMNO, M., 2010

[2] V. M. Nezhinskii, Yu. V. Maslova, “Zatsepleniya vershinno osnaschennykh grafov”, Vestn. SPbGU. Ser. 1, 2012, no. 2, 57–60

[3] F. Kharari, Teoriya grafov, KomKniga, M., 2006