Pretrees and arborescent convexities
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 12, Tome 415 (2013), pp. 75-90 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We prove that the class of pretrees, the theory of which is developed by L. Ward [11], B. Bowditch [2], S. Adeleke and P. Neumann [1], and others, is canonically isomorphic to the class of arborescent convexity spaces introduced by P. Duchet [6] in the framework of abstract convexity theory.
@article{ZNSL_2013_415_a10,
     author = {A. V. Malyutin},
     title = {Pretrees and arborescent convexities},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {75--90},
     year = {2013},
     volume = {415},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_415_a10/}
}
TY  - JOUR
AU  - A. V. Malyutin
TI  - Pretrees and arborescent convexities
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 75
EP  - 90
VL  - 415
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_415_a10/
LA  - en
ID  - ZNSL_2013_415_a10
ER  - 
%0 Journal Article
%A A. V. Malyutin
%T Pretrees and arborescent convexities
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 75-90
%V 415
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_415_a10/
%G en
%F ZNSL_2013_415_a10
A. V. Malyutin. Pretrees and arborescent convexities. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 12, Tome 415 (2013), pp. 75-90. http://geodesic.mathdoc.fr/item/ZNSL_2013_415_a10/

[1] S. A. Adeleke, P. M. Neumann, Relations related to betweenness: their structure and automorphisms, Memoirs Amer. Math. Soc., 623, Amer. Math. Soc., Providence, 1998 | MR | Zbl

[2] B. H. Bowditch, Treelike structures arising from continua and convergence groups, Memoirs Amer. Math. Soc., 662, Amer. Math. Soc., Providence, 1999 | MR | Zbl

[3] B. H. Bowditch, J. Crisp, “Archimedean actions on median pretrees”, Math. Proc. Camb. Phil. Soc., 130 (2001), 383–400 | DOI | MR | Zbl

[4] B. H. Bowditch, “Peripheral splittings of groups”, Trans. Amer. Math. Soc., 353 (2001), 4057–4082 | DOI | MR | Zbl

[5] S. Burris, “Embedding algebraic closure spaces in 2-ary closure spaces”, Portug. Math., 31 (1972), 183–185 | MR | Zbl

[6] P. Duchet, “Convexity in combinatorial structures”, Proceedings of the 14th Winter School on Abstract Analysis, Rendiconti del Circolo Matematico di Palermo, Serie II, Supplemento No 14, Circolo Matematico di Palermo, Palermo, 1987, 261–293 | MR | Zbl

[7] R. E. Jamison-Waldner, “A perspective on abstract convexity: Classifying alignments by varieties”, Convexity and Related Combinatorial Geometry, Proc. 2nd Univ. of Oklahoma Conf., Dekker, New York, 1982, 113–150 | MR

[8] A. V. Malyutin, Pretrees and the shadow topology, Preprint No 23, PDMI, 2012

[9] V. P. Soltan, Introduction to the Axiomatic Theory of Convexity, Ştiinţa, Chişinău, 1984 (in Russian) | MR

[10] M. L. J. van de Vel, Theory of Convex Structures, North Holland, Amsterdam, 1993 | MR

[11] L. E. Ward (Jr.), “Axioms for cutpoints”, General Topology and Modern Analysis, Proc. Conf. (Univ. California, Riverside, Calif., 1980), Academic Press, New York, 1981, 327–336 | MR