On polygons inscribed into a~convex figure
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 12, Tome 415 (2013), pp. 15-20

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper contains a survey of results about the possibility to inscribe convex polygons of particular types into a plane convex figure. It is proved that if $K$ is a smooth convex figure, then $K$ is circumscribed either about four different reflection-symmetric convex equilateral pentagons or about a regular pentagon. Let $S$ be a family of convex hexagons whose vertices are the vertices of two negatively homothetic equilateral triangles with common center. It is proved that if $K$ is a smooth convex figure, then $K$ is circumscribed either about a hexagon in $S$ or about two pentagons with vertices at the vertices of two hexagons in $S$. In the latter case, the sixth vertex of one of the hexagons lies outside $K$, while the sixth vertex of anther one lies inside $K$.
@article{ZNSL_2013_415_a1,
     author = {V. V. Makeev},
     title = {On polygons inscribed into a~convex figure},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {15--20},
     publisher = {mathdoc},
     volume = {415},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_415_a1/}
}
TY  - JOUR
AU  - V. V. Makeev
TI  - On polygons inscribed into a~convex figure
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 15
EP  - 20
VL  - 415
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_415_a1/
LA  - ru
ID  - ZNSL_2013_415_a1
ER  - 
%0 Journal Article
%A V. V. Makeev
%T On polygons inscribed into a~convex figure
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 15-20
%V 415
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_415_a1/
%G ru
%F ZNSL_2013_415_a1
V. V. Makeev. On polygons inscribed into a~convex figure. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 12, Tome 415 (2013), pp. 15-20. http://geodesic.mathdoc.fr/item/ZNSL_2013_415_a1/