On polygons inscribed into a convex figure
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 12, Tome 415 (2013), pp. 15-20 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper contains a survey of results about the possibility to inscribe convex polygons of particular types into a plane convex figure. It is proved that if $K$ is a smooth convex figure, then $K$ is circumscribed either about four different reflection-symmetric convex equilateral pentagons or about a regular pentagon. Let $S$ be a family of convex hexagons whose vertices are the vertices of two negatively homothetic equilateral triangles with common center. It is proved that if $K$ is a smooth convex figure, then $K$ is circumscribed either about a hexagon in $S$ or about two pentagons with vertices at the vertices of two hexagons in $S$. In the latter case, the sixth vertex of one of the hexagons lies outside $K$, while the sixth vertex of anther one lies inside $K$.
@article{ZNSL_2013_415_a1,
     author = {V. V. Makeev},
     title = {On polygons inscribed into a~convex figure},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {15--20},
     year = {2013},
     volume = {415},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_415_a1/}
}
TY  - JOUR
AU  - V. V. Makeev
TI  - On polygons inscribed into a convex figure
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 15
EP  - 20
VL  - 415
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_415_a1/
LA  - ru
ID  - ZNSL_2013_415_a1
ER  - 
%0 Journal Article
%A V. V. Makeev
%T On polygons inscribed into a convex figure
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 15-20
%V 415
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_415_a1/
%G ru
%F ZNSL_2013_415_a1
V. V. Makeev. On polygons inscribed into a convex figure. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 12, Tome 415 (2013), pp. 15-20. http://geodesic.mathdoc.fr/item/ZNSL_2013_415_a1/

[1] L. G. Shnirelman, “O nekotorykh geometricheskikh svoistvakh zamknutykh krivykh”, Uspekhi mat. nauk, 1944, no. 10, 34–44 | MR | Zbl

[2] A. S. Besicovitch, “Measure of asymmetry of convex curves”, J. London. Math. Soc., 23 (1945), 237–240 | MR

[3] I. M. Yaglom, V. G. Boltyanskii, Vypuklye figury, Gostekhizdat, M., 1951

[4] H. G. Eggleston, “Figures inscribed in convex sets”, Amer. Math. Monthly, 65 (1958), 76–80 | DOI | MR | Zbl

[5] B. Gryunbaum, Etyudy po kombinatornoi geometrii i teorii vypuklykh tel, Nauka, M., 1971 | MR

[6] W. Böhme, “Ein Satz über ebene konvexe Figuren”, Math.-Phys. Semesterber., 6 (1958), 153–156 | MR

[7] B. Grünbaum, “Affine-regular polygons inscribed in plane convex sets”, Riveon Lematimatika, 13 (1959), 20–24 | MR

[8] V. V. Makeev, “O pyatiugolnikakh, vpisannykh v zamknutuyu vypukluyu krivuyu”, Zap. nauchn. semin. POMI, 246, 1997, 184–190 | MR | Zbl

[9] V. V. Makeev, “O chetyrëkhugolnikakh, vpisannykh v zamknutuyu krivuyu, i eë vershinakh”, Zap. nauchn. semin. POMI, 299, 2003, 241–251 | MR | Zbl

[10] V. V. Makeev, “O chetyrëkhugolnikakh, vpisannykh v zamknutuyu krivuyu”, Mat. zametki, 57:1 (1995), 129–132 | MR | Zbl

[11] M. L. Gromov, “O simpleksakh, vpisannykh v giperpoverkhnosti”, Mat. zametki, 5:1 (1969), 81–89 | MR | Zbl

[12] V. V. Makeev, N. Yu. Netsvetaev, “O vpisannykh i opisannykh mnogogrannikakh dlya tsentralno-simmetrichnogo vypuklogo tela”, Zap. nauchn. semin. POMI, 415, 2013, 54–61

[13] V. V. Makeev, “Applications of topology to some problems in combinatorial geometry”, Mathematics in St. Petersburg, Amer. Math. Soc. Transl., Ser 2, 174, Amer. Math. Soc., Providence, 1996, 223–228 | MR | Zbl

[14] V. V. Makeev, “Affinno-vpisannye i affinno-opisannye mnogougolniki i mnogogranniki”, Zap. nauch. semin. POMI, 231, 1995, 286–298 | MR | Zbl

[15] L. A. Lyusternik, Vypuklye figury i mnogogranniki, GTTI, M., 1956