On two conjectures of Makeev
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 12, Tome 415 (2013), pp. 5-14 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A counterexample is constructed to the conjecture of Makeev about Knaster $4$-tuples on the sphere $S^2$. A partial progress is obtained concerning another conjecture of Makeev about quadrangles inscribed in a smooth simple closed curve in the plane.
@article{ZNSL_2013_415_a0,
     author = {R. N. Karasev},
     title = {On two conjectures of {Makeev}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--14},
     year = {2013},
     volume = {415},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_415_a0/}
}
TY  - JOUR
AU  - R. N. Karasev
TI  - On two conjectures of Makeev
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 5
EP  - 14
VL  - 415
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_415_a0/
LA  - ru
ID  - ZNSL_2013_415_a0
ER  - 
%0 Journal Article
%A R. N. Karasev
%T On two conjectures of Makeev
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 5-14
%V 415
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_415_a0/
%G ru
%F ZNSL_2013_415_a0
R. N. Karasev. On two conjectures of Makeev. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 12, Tome 415 (2013), pp. 5-14. http://geodesic.mathdoc.fr/item/ZNSL_2013_415_a0/

[1] R. C. Bose, “On the number of circles of curvature perfectly enclosing or perfectly enclosed by a closed oval”, Math. Ann., 35 (1932), 16–24 | MR | Zbl

[2] W. Chen, “Counterexamples to Knaster's conjecture”, Topology, 37:2 (1998), 401–405 | DOI | MR | Zbl

[3] F. J. Dyson, “Continuous functions defined on spheres”, Ann. of Math., 54 (1951), 534–536 | DOI | MR | Zbl

[4] E. E. Floyd, “Real valued mappings of spheres”, Proc. Amer. Math. Soc., 6 (1955), 1957–1959 | DOI | MR

[5] H. B. Griffiths, “The topology of square pegs in round holes”, Proc. London Math. Soc., 62:3 (1991), 647–672 | DOI | MR | Zbl

[6] A. Hinrichs, C. Richter, “The Knaster problem: More counterexamples”, Isr. J. Math., 145:1 (2005), 311–324 | DOI | MR | Zbl

[7] B. S. Kashin, S. J. Szarek, “The Knaster problem and the geometry of high-dimensional cubes”, C. R. Acad. Sci. Paris Sér. I, 336:11 (2003), 931–936 | DOI | MR | Zbl

[8] B. Knaster, “Problem 4”, Colloq. Math., 30 (1947), 30–31

[9] G. R. Livesay, “On a theorem of F. J. Dyson”, Ann. of Math., 59 (1954), 227–229 | DOI | MR

[10] V. V. Makeev, “Zadacha Knastera i pochti sfericheskie secheniya”, Mat. sbornik, 180:3 (1989), 424–431 | MR | Zbl

[11] V. V. Makeev, “Reshenie zadachi Knastera dlya mnogochlenov vtoroi stepeni na dvumernoi sfere”, Mat. zametki, 53:1 (1993), 147–148 | MR | Zbl

[12] V. V. Makeev, “O chetyrekhugolnikakh, vpisannykh v zamknutuyu krivuyu”, Mat. zametki, 57:1 (1995), 129–132 | MR | Zbl

[13] V. V. Makeev, Universalno vpisannye i opisannye mnogogranniki, Dissertatsiya na soiskanie uchënoi stepeni doktora fiziko-matematicheskikh nauk, Sankt-Peterburgskii gosudarstvennyi universitet, Sankt-Peterburg, 2003