Some homology representations for Grassmannians in cross-characteristics
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 25, Tome 414 (2013), pp. 156-180 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\mathbb F$ be the finite field of $q$ elements and let $\mathcal P(n,q)$ denote the projective space of dimension $n-1$ over $\mathbb F$. We construct a family $H^n_{k,i}$ of combinatorial homology modules associated to $\mathcal P(n,q)$ for coefficient fields of positive characteristic co-prime to $q$. As $F\mathrm{GL}(n,q)$-representations these modules are obtained from the permutation action of $\mathrm{GL}(n,q)$ on the Grassmannians of $\mathbb F^n$. We prove a branching rule for $H^n_{k,i}$ and use this to determine the homology representations completely. Our results include a duality theorem and the characterisation of $H^n_{k,i}$ through the standard irreducibles of $\mathrm{GL}(n,q)$ over $F$.
@article{ZNSL_2013_414_a9,
     author = {J. Siemons and D. Smith},
     title = {Some homology representations for {Grassmannians} in cross-characteristics},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {156--180},
     year = {2013},
     volume = {414},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a9/}
}
TY  - JOUR
AU  - J. Siemons
AU  - D. Smith
TI  - Some homology representations for Grassmannians in cross-characteristics
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 156
EP  - 180
VL  - 414
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a9/
LA  - en
ID  - ZNSL_2013_414_a9
ER  - 
%0 Journal Article
%A J. Siemons
%A D. Smith
%T Some homology representations for Grassmannians in cross-characteristics
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 156-180
%V 414
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a9/
%G en
%F ZNSL_2013_414_a9
J. Siemons; D. Smith. Some homology representations for Grassmannians in cross-characteristics. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 25, Tome 414 (2013), pp. 156-180. http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a9/

[1] M. Dubois-Violette, “$d^N=0$: Generalized homology”, $K$-Theory, 14:4 (1998), 371–404 | DOI | MR | Zbl

[2] S. Fisk, “Homology of projective space over finite fields”, J. Combin. Theory, Ser. A, 78 (1997), 309–312 | DOI | MR | Zbl

[3] A. Frumkin, A. Yakir, “Rank of inclusion matrices and modular representation theory”, Israel J. Math., 71 (1990), 309–320 | DOI | MR | Zbl

[4] G. D. James, Representations of General Linear Groups, LMS Lect. Note Ser., 94, Cambridge Univ. Press, Cambridge, 1984 | MR | Zbl

[5] M. M. Kapranov, On the $q$-analogue of homological algebra, arXiv: q-alg/9611005v1

[6] W. Mayer, “A new homology theory”, Ann. Math., 48 (1947), 370–380, 594–605 | MR

[7] W. Mielants, H. Leemans, “$\mathbb Z_2$-cohomology of projective spaces of odd order”, Combinatorics'81 (Rome, 1981), Ann. Discr. Math., 18, North-Holland, Amsterdam–New York, 1983, 635–651 | MR | Zbl

[8] V. Mnukhin, J. Siemons, “On modular homology in projective space”, J. Pure Appl. Algebra, 151:1 (2000), 51–65 | DOI | MR | Zbl

[9] V. Mnukhin, J. Siemons, “On Stanley's Inequalities for Character Multiplicities”, Archiv Math., 97 (2011), 513–521 | DOI | MR | Zbl

[10] H. Morikawa, “On a certain homology of finite projective spaces”, Nagoya Math. J., 90 (1983), 57–62 | MR | Zbl

[11] J. R. Munkres, Elements of Algebraic Topology, Addison Wesley, 1984 | MR | Zbl

[12] A. J. E. Ryba, “Fibonacci Representations of the Symmetric Groups”, J. Algebra, 170 (1994), 678–686 | DOI | MR | Zbl

[13] J. Siemons, Orbit numbers and the $p$-rank of incidence matrices in finite projective spaces (to appear)

[14] R. P. Stanley, “Some aspects of groups acting on finite posets”, J. Comb. Theory A, 32 (1982), 121–155 | DOI | MR