Some homology representations for Grassmannians in cross-characteristics
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 25, Tome 414 (2013), pp. 156-180

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathbb F$ be the finite field of $q$ elements and let $\mathcal P(n,q)$ denote the projective space of dimension $n-1$ over $\mathbb F$. We construct a family $H^n_{k,i}$ of combinatorial homology modules associated to $\mathcal P(n,q)$ for coefficient fields of positive characteristic co-prime to $q$. As $F\mathrm{GL}(n,q)$-representations these modules are obtained from the permutation action of $\mathrm{GL}(n,q)$ on the Grassmannians of $\mathbb F^n$. We prove a branching rule for $H^n_{k,i}$ and use this to determine the homology representations completely. Our results include a duality theorem and the characterisation of $H^n_{k,i}$ through the standard irreducibles of $\mathrm{GL}(n,q)$ over $F$.
@article{ZNSL_2013_414_a9,
     author = {J. Siemons and D. Smith},
     title = {Some homology representations for {Grassmannians} in cross-characteristics},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {156--180},
     publisher = {mathdoc},
     volume = {414},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a9/}
}
TY  - JOUR
AU  - J. Siemons
AU  - D. Smith
TI  - Some homology representations for Grassmannians in cross-characteristics
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 156
EP  - 180
VL  - 414
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a9/
LA  - en
ID  - ZNSL_2013_414_a9
ER  - 
%0 Journal Article
%A J. Siemons
%A D. Smith
%T Some homology representations for Grassmannians in cross-characteristics
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 156-180
%V 414
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a9/
%G en
%F ZNSL_2013_414_a9
J. Siemons; D. Smith. Some homology representations for Grassmannians in cross-characteristics. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 25, Tome 414 (2013), pp. 156-180. http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a9/