Subregular characters of the group $\mathrm{UT}(n,\mathbb R)$
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 25, Tome 414 (2013), pp. 138-155
Voir la notice du chapitre de livre
The formulas for subregular characters of the unitriangular Lie group are obtained. The supports of regular and subregular characters are described in terms of the orbit method.
@article{ZNSL_2013_414_a8,
author = {A. N. Panov and E. V. Suray},
title = {Subregular characters of the group $\mathrm{UT}(n,\mathbb R)$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {138--155},
year = {2013},
volume = {414},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a8/}
}
A. N. Panov; E. V. Suray. Subregular characters of the group $\mathrm{UT}(n,\mathbb R)$. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 25, Tome 414 (2013), pp. 138-155. http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a8/
[1] A. A. Kirillov, “Unitarnye predstavleniya nilpotentnykh grupp Li”, UMN, 17:4 (1962), 57–110 | MR | Zbl
[2] A. A. Kirillov, Lektsii po metodu orbit, Nauchnaya kniga, Novosibirsk, 2002
[3] M. V. Ignatev, “Subregulyarnye kharaktery unitreugolnoi gruppy nad konechnym polem”, Fund. i prikl. matem., 13:5 (2007), 103–125 ; arXiv: 0801.3079 | MR | Zbl
[4] M. V. Ignatev, A. N. Panov, “Koprisoedinennye orbity gruppy $UT(7,K)$”, Fund. i prikl. mat., 13:5 (2007), 127–159 ; arXiv: math/0603649 | MR