Subregular characters of the group $\mathrm{UT}(n,\mathbb R)$
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 25, Tome 414 (2013), pp. 138-155
Cet article a éte moissonné depuis la source Math-Net.Ru
The formulas for subregular characters of the unitriangular Lie group are obtained. The supports of regular and subregular characters are described in terms of the orbit method.
@article{ZNSL_2013_414_a8,
author = {A. N. Panov and E. V. Suray},
title = {Subregular characters of the group $\mathrm{UT}(n,\mathbb R)$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {138--155},
year = {2013},
volume = {414},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a8/}
}
A. N. Panov; E. V. Suray. Subregular characters of the group $\mathrm{UT}(n,\mathbb R)$. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 25, Tome 414 (2013), pp. 138-155. http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a8/
[1] A. A. Kirillov, “Unitarnye predstavleniya nilpotentnykh grupp Li”, UMN, 17:4 (1962), 57–110 | MR | Zbl
[2] A. A. Kirillov, Lektsii po metodu orbit, Nauchnaya kniga, Novosibirsk, 2002
[3] M. V. Ignatev, “Subregulyarnye kharaktery unitreugolnoi gruppy nad konechnym polem”, Fund. i prikl. matem., 13:5 (2007), 103–125 ; arXiv: 0801.3079 | MR | Zbl
[4] M. V. Ignatev, A. N. Panov, “Koprisoedinennye orbity gruppy $UT(7,K)$”, Fund. i prikl. mat., 13:5 (2007), 127–159 ; arXiv: math/0603649 | MR