The orbit method for unipotent groups over finite field
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 25, Tome 414 (2013), pp. 127-137 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the paper, we obtain formula for multiplicities of certain representations of unipotent groups over the finite field in terms of coadjoint orbits.
@article{ZNSL_2013_414_a7,
     author = {A. N. Panov},
     title = {The orbit method for unipotent groups over finite field},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {127--137},
     year = {2013},
     volume = {414},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a7/}
}
TY  - JOUR
AU  - A. N. Panov
TI  - The orbit method for unipotent groups over finite field
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 127
EP  - 137
VL  - 414
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a7/
LA  - ru
ID  - ZNSL_2013_414_a7
ER  - 
%0 Journal Article
%A A. N. Panov
%T The orbit method for unipotent groups over finite field
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 127-137
%V 414
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a7/
%G ru
%F ZNSL_2013_414_a7
A. N. Panov. The orbit method for unipotent groups over finite field. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 25, Tome 414 (2013), pp. 127-137. http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a7/

[1] A. A. Kirillov, “Unitarnye predstavleniya nilpotentnykh grupp Li”, UMN, 17:4 (1962), 57–110 | MR | Zbl

[2] A. A. Kirillov, Lektsii po metodu orbit, Nauchnaya kniga, Novosibirsk, 2002

[3] D. Vogan (Jr.), “The orbit method and unitary representations for reductive Lie groups”, Alg. Anal. Methods Repres. Theory, Sonderborg, 1994, 243–339 | MR

[4] D. Vogan (Jr.), “The method of coadjoint orbits for real reductive groups”, Repres. Theory Lie Groups, 1998, 179–238 | MR

[5] D. Kazhdan, “Proof of Springer's Hypothesis”, Israel J. Math., 28:4 (1977), 272–286 | DOI | MR | Zbl

[6] M. V. Ignatev, Vvedenie v metod orbit nad konechnym polem, MTsNMO, Moskva, 2013

[7] Ch. Kertis, I. Rainer, Teoriya predstavlenii konechnykh grupp i assotsiativnykh algebr, Nauka, M., 1969 | MR