Incompressibility of generic torsors of norm tori
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 25, Tome 414 (2013), pp. 106-112

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $p$ be a prime integer, $F$ be a field of characteristic not $p$, $T$ the norm torus of a degree $p^n$ extension field of $F$, and $E$$T$-torsor over $F$ such that the degree of each closed point on $E$ is divisible by $p^n$ (a generic $T$-torsor has this property). We prove that $E$ is $p$-incompressible. Moreover, all smooth compactifications of $E$ (including those given by toric varieties) are $p$-incompressible. The main requisites of the proof are: (1) A. Merkurjev's degree formula (requiring the characteristic assumption), generalizing M. Rost's degree formula, and (2) combinatorial construction of a smooth projective fan invariant under an action of a finite group on the ambient lattice due to J.-L. Colliot-Thélène–D. Harari–A. N. Skorobogatov, produced by refinement of J.-L. Brylinski's method with a help of an idea of K. Künnemann.
@article{ZNSL_2013_414_a5,
     author = {N. A. Karpenko},
     title = {Incompressibility of generic torsors of norm tori},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {106--112},
     publisher = {mathdoc},
     volume = {414},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a5/}
}
TY  - JOUR
AU  - N. A. Karpenko
TI  - Incompressibility of generic torsors of norm tori
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 106
EP  - 112
VL  - 414
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a5/
LA  - en
ID  - ZNSL_2013_414_a5
ER  - 
%0 Journal Article
%A N. A. Karpenko
%T Incompressibility of generic torsors of norm tori
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 106-112
%V 414
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a5/
%G en
%F ZNSL_2013_414_a5
N. A. Karpenko. Incompressibility of generic torsors of norm tori. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 25, Tome 414 (2013), pp. 106-112. http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a5/