Incompressibility of generic torsors of norm tori
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 25, Tome 414 (2013), pp. 106-112 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $p$ be a prime integer, $F$ be a field of characteristic not $p$, $T$ the norm torus of a degree $p^n$ extension field of $F$, and $E$ a $T$-torsor over $F$ such that the degree of each closed point on $E$ is divisible by $p^n$ (a generic $T$-torsor has this property). We prove that $E$ is $p$-incompressible. Moreover, all smooth compactifications of $E$ (including those given by toric varieties) are $p$-incompressible. The main requisites of the proof are: (1) A. Merkurjev's degree formula (requiring the characteristic assumption), generalizing M. Rost's degree formula, and (2) combinatorial construction of a smooth projective fan invariant under an action of a finite group on the ambient lattice due to J.-L. Colliot-Thélène–D. Harari–A. N. Skorobogatov, produced by refinement of J.-L. Brylinski's method with a help of an idea of K. Künnemann.
@article{ZNSL_2013_414_a5,
     author = {N. A. Karpenko},
     title = {Incompressibility of generic torsors of norm tori},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {106--112},
     year = {2013},
     volume = {414},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a5/}
}
TY  - JOUR
AU  - N. A. Karpenko
TI  - Incompressibility of generic torsors of norm tori
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 106
EP  - 112
VL  - 414
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a5/
LA  - en
ID  - ZNSL_2013_414_a5
ER  - 
%0 Journal Article
%A N. A. Karpenko
%T Incompressibility of generic torsors of norm tori
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 106-112
%V 414
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a5/
%G en
%F ZNSL_2013_414_a5
N. A. Karpenko. Incompressibility of generic torsors of norm tori. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 25, Tome 414 (2013), pp. 106-112. http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a5/

[1] P. Brosnan, “Steenrod operations in Chow theory”, Trans. Amer. Math. Soc., 355:5 (2003), 1869–1903, (electronic) | DOI | MR | Zbl

[2] J.-L. Colliot-Thélène, D. Harari, A. N. Skorobogatov, “Compactification équivariante d'un tore (d'après Brylinski et Künnemann)”, Expo. Math., 23:2 (2005), 161–170 | DOI | MR | Zbl

[3] V. I. Danilov, “The geometry of toric varieties”, Uspekhi Mat. Nauk, 33:2(200) (1978), 85–134, 247 | MR | Zbl

[4] I. B. Fesenko, S. V. Vostokov, Local fields and their extensions, With a foreword by I. R. Shafarevich, Translations of Mathematical Monographs, 121, second ed., American Mathematical Society, Providence, RI, 2002 | MR | Zbl

[5] M. Florence, “On the essential dimension of cyclic $p$-groups”, Invent. Math., 171:1 (2008), 175–189 | DOI | MR | Zbl

[6] W. Fulton, Introduction to toric varieties, The William H. Roever Lectures in Geometry, Annals of Mathematics Studies, 131, Princeton University Press, Princeton, NJ, 1993 | MR | Zbl

[7] O. Haution, “Integrality of the Chern character in small codimension”, Adv. Math., 231:2 (2012), 855–878 | DOI | MR | Zbl

[8] N. A. Karpenko, “Canonical dimension”, Proceedings of the International {C}ongress of Mathematicians, v. II, Hindustan Book Agency, New Delhi, 2010, 146–161 | MR

[9] N. A. Karpenko, A. S. Merkurjev, On standard norm varieties, 4 Jan 2012; revised: 18 Jun 2012, 38 pp., arXiv: ; Ann. Sci. Éc. Norm. Supér. (4), 46:1 (2013), 175–214 1201.1257v2[math.AG] | MR | Zbl

[10] N. A. Karpenko, A. S. Merkurjev, “Canonical $p$-dimension of algebraic groups”, Adv. Math., 205:2 (2006), 410–433 | DOI | MR | Zbl

[11] M.-A. Knus, A. Merkurjev, M. Rost, J.-P. Tignol, The book of involutions, With a preface in French by J. Tits, American Mathematical Society Colloquium Publications, 44, American Mathematical Society, Providence, RI, 1998 | MR | Zbl

[12] A. Merkurjev, “Rost invariants of simply connected algebraic groups”, book Cohomological invariants in Galois cohomology, With a section by Skip Garibaldi, Univ. Lecture Ser., 28, Amer. Math. Soc., Providence, RI, 2003, 101–158 | MR

[13] A. S. Merkurjev, Essential dimension: a survey, Preprint, 2012, 59 pp., Available on the web page of the author | MR

[14] A. S. Merkurjev, Essential dimension of certain subfunctors, Preprint, 2012, 3 pp., Available on the web page of the author

[15] A. S. Merkurjev, “Steenrod operations and degree formulas”, J. reine angew. Math., 565 (2003), 13–26 | MR | Zbl

[16] A. S. Merkurjev, “Essential dimension”, Quadratic Forms – Algebra, Arithmetic, and Geometry, Contemp. Math., 493, Amer. Math. Soc., Providence, RI, 2009, 299–326 | DOI | MR

[17] J.-P. Serre, Groupes algébriques et corps de classes, Publications de l'Institut Mathématique de l'Université de Nancago [Publications of the Mathematical Institute of the University of Nancago], 7, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], 1264, second ed., Hermann, Paris, 1984 | MR

[18] V. E. Voskresenskiĭ, A. A. Klyachko, “Toric Fano varieties and systems of roots”, Izv. Akad. Nauk SSSR Ser. Mat., 48:2 (1984), 237–263 | MR | Zbl