Kostant--Kumar polynomials and tangent cones to Schubert varieties for involutions in $A_n$, $F_4$ and $G_2$
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 25, Tome 414 (2013), pp. 82-105
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be a complex reductive algebraic group and $W$ its Weyl group. We prove that if $W$ are of type $A_n$, $F_4$ or $G_2$ and $w,w'$ are disjoint involutions in $W$, then the corresponding Kostant–Kumar polynomials do not coincide. As a consequence, we deduce that the tangent cones to the Schubert subvarieties $X_w$, $X_{w'}$ of the flag variety of $G$ do not coincide, too.
@article{ZNSL_2013_414_a4,
author = {D. Yu. Eliseev and M. V. Ignat'ev},
title = {Kostant--Kumar polynomials and tangent cones to {Schubert} varieties for involutions in $A_n$, $F_4$ and $G_2$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {82--105},
publisher = {mathdoc},
volume = {414},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a4/}
}
TY - JOUR AU - D. Yu. Eliseev AU - M. V. Ignat'ev TI - Kostant--Kumar polynomials and tangent cones to Schubert varieties for involutions in $A_n$, $F_4$ and $G_2$ JO - Zapiski Nauchnykh Seminarov POMI PY - 2013 SP - 82 EP - 105 VL - 414 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a4/ LA - ru ID - ZNSL_2013_414_a4 ER -
%0 Journal Article %A D. Yu. Eliseev %A M. V. Ignat'ev %T Kostant--Kumar polynomials and tangent cones to Schubert varieties for involutions in $A_n$, $F_4$ and $G_2$ %J Zapiski Nauchnykh Seminarov POMI %D 2013 %P 82-105 %V 414 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a4/ %G ru %F ZNSL_2013_414_a4
D. Yu. Eliseev; M. V. Ignat'ev. Kostant--Kumar polynomials and tangent cones to Schubert varieties for involutions in $A_n$, $F_4$ and $G_2$. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 25, Tome 414 (2013), pp. 82-105. http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a4/