Kostant--Kumar polynomials and tangent cones to Schubert varieties for involutions in $A_n$, $F_4$ and $G_2$
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 25, Tome 414 (2013), pp. 82-105

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a complex reductive algebraic group and $W$ its Weyl group. We prove that if $W$ are of type $A_n$, $F_4$ or $G_2$ and $w,w'$ are disjoint involutions in $W$, then the corresponding Kostant–Kumar polynomials do not coincide. As a consequence, we deduce that the tangent cones to the Schubert subvarieties $X_w$, $X_{w'}$ of the flag variety of $G$ do not coincide, too.
@article{ZNSL_2013_414_a4,
     author = {D. Yu. Eliseev and M. V. Ignat'ev},
     title = {Kostant--Kumar polynomials and tangent cones to {Schubert} varieties for involutions in $A_n$, $F_4$ and $G_2$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {82--105},
     publisher = {mathdoc},
     volume = {414},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a4/}
}
TY  - JOUR
AU  - D. Yu. Eliseev
AU  - M. V. Ignat'ev
TI  - Kostant--Kumar polynomials and tangent cones to Schubert varieties for involutions in $A_n$, $F_4$ and $G_2$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 82
EP  - 105
VL  - 414
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a4/
LA  - ru
ID  - ZNSL_2013_414_a4
ER  - 
%0 Journal Article
%A D. Yu. Eliseev
%A M. V. Ignat'ev
%T Kostant--Kumar polynomials and tangent cones to Schubert varieties for involutions in $A_n$, $F_4$ and $G_2$
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 82-105
%V 414
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a4/
%G ru
%F ZNSL_2013_414_a4
D. Yu. Eliseev; M. V. Ignat'ev. Kostant--Kumar polynomials and tangent cones to Schubert varieties for involutions in $A_n$, $F_4$ and $G_2$. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 25, Tome 414 (2013), pp. 82-105. http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a4/