Kostant–Kumar polynomials and tangent cones to Schubert varieties for involutions in $A_n$, $F_4$ and $G_2$
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 25, Tome 414 (2013), pp. 82-105 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $G$ be a complex reductive algebraic group and $W$ its Weyl group. We prove that if $W$ are of type $A_n$, $F_4$ or $G_2$ and $w,w'$ are disjoint involutions in $W$, then the corresponding Kostant–Kumar polynomials do not coincide. As a consequence, we deduce that the tangent cones to the Schubert subvarieties $X_w$, $X_{w'}$ of the flag variety of $G$ do not coincide, too.
@article{ZNSL_2013_414_a4,
     author = {D. Yu. Eliseev and M. V. Ignat'ev},
     title = {Kostant{\textendash}Kumar polynomials and tangent cones to {Schubert} varieties for involutions in $A_n$, $F_4$ and $G_2$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {82--105},
     year = {2013},
     volume = {414},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a4/}
}
TY  - JOUR
AU  - D. Yu. Eliseev
AU  - M. V. Ignat'ev
TI  - Kostant–Kumar polynomials and tangent cones to Schubert varieties for involutions in $A_n$, $F_4$ and $G_2$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 82
EP  - 105
VL  - 414
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a4/
LA  - ru
ID  - ZNSL_2013_414_a4
ER  - 
%0 Journal Article
%A D. Yu. Eliseev
%A M. V. Ignat'ev
%T Kostant–Kumar polynomials and tangent cones to Schubert varieties for involutions in $A_n$, $F_4$ and $G_2$
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 82-105
%V 414
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a4/
%G ru
%F ZNSL_2013_414_a4
D. Yu. Eliseev; M. V. Ignat'ev. Kostant–Kumar polynomials and tangent cones to Schubert varieties for involutions in $A_n$, $F_4$ and $G_2$. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 25, Tome 414 (2013), pp. 82-105. http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a4/

[1] M. A. Bochkarëv, “Kasatelnye konusy mnogoobrazii Shuberta”, Tretya mezhdunar. shkola-konferentsiya “Algebry Li, algebraicheskie gruppy i teoriya invariantov”, posv. 75-letiyu E. B. Vinberga (Tolyatti, Rossiya, 25–30 iyunya 2012 g.), Tez. dokl., izd-vo TGU, Tolyatti, 2012, 12–13

[2] N. Burbaki, Gruppy Li i algebry Li, Glavy 4–6, Mir, M., 1972

[3] D. Yu. Eliseev, M. V. Ignatev, “Mnogochleny Kostanta i kasatelnye konusy k mnogoobraziyam Shuberta”, Tretya mezhdunar. shkola-konferentsiya “Algebry Li, algebraicheskie gruppy i teoriya invariantov”, posv. 75-letiyu E. B. Vinberga (Tolyatti, Rossiya, 25–30 iyunya 2012 g.), Tez. dokl., izd-vo TGU, Tolyatti, 2012, 24–25

[4] D. Yu. Eliseev, A. N. Panov, “Kasatelnye konusy mnogoobrazii Shuberta dlya $A_n$ malogo ranga”, Zap. nauchn. semin. POMI, 394, 2011, 218–225 ; arXiv: 1109.0399[math.RT] | MR

[5] M. V. Ignatev, “Poryadok Bryua–Shevalle na involyutsiyakh v giperoktaedralnoi gruppe i kombinatorika zamykanii $B$-orbit”, Zap. nauchn. semin. POMI, 400, 2012, 166–188 ; arXiv: 1112.2624[math.RT] | MR

[6] A. A. Kirillov, “Unitarnye predstavleniya nilpotentnykh grupp Li”, Uspekhi mat. nauk, 17:4 (1962), 57–110 | MR | Zbl

[7] A. A. Kirillov, Lektsii po metodu orbit, Nauchnaya kniga (IDMI), Novosibirsk, 2002

[8] Dzh. Khamfri, Lineinye algebraicheskie gruppy, Nauka, M., 1980 | MR

[9] S. Billey, “Kostant polynomials and the cohomology ring for $G/B$”, Duke Math. J., 96 (1999), 205–224 | DOI | MR | Zbl

[10] S. Billey, V. Lakshmibai, Singular loci of Schubert varieties, Progr. in Math., 182, Birkhäuser, 2000 | MR | Zbl

[11] M. Dyer, “The nil-Hecke ring and Deodhar's conjecture on Bruhat intervals”, Invent. Math., 111 (1993), 571–574 | DOI | MR | Zbl

[12] J. Humphreys, Reflection groups and Coxeter groups, Cambridge University Press, Cambridge, 1992 | MR | Zbl

[13] M. V. Ignatyev, “Combinatorics of $B$-orbits and the Bruhat–Chevalley order on involutions”, Transformation Groups, 17:3 (2012), 747–780 ; arXiv: 1101.2189[math.RT] | DOI | MR | Zbl

[14] F. Incitti, Bruhat order on the involutions of classical Weyl groups, Ph. D. thesis. Dip. di Mat. “Guido Castelnuovo”, Università di Roma “La Sapienza”, 2003

[15] B. Kostant, S. Kumar, “The nil-Hecke ring and cohomology of $G/P$ for a Kac–Moody group $G$”, Adv. Math., 62 (1986), 187–237 | DOI | MR | Zbl

[16] B. Kostant, S. Kumar, “$T$-equivariant $K$-theory of generalized flag varieties”, J. Diff. Geom., 32 (1990), 549–603 | MR | Zbl

[17] S. Kumar, “The nil-Hecke ring and singularity of Schubert varieties”, Invent. Math., 123 (1996), 471–506 | DOI | MR | Zbl

[18] W. A. Stein et al., book Sage Mathematics Software, Version 4.6.1, The Sage Development Team, 2011 available at http://www.sagemath.org