@article{ZNSL_2013_414_a4,
author = {D. Yu. Eliseev and M. V. Ignat'ev},
title = {Kostant{\textendash}Kumar polynomials and tangent cones to {Schubert} varieties for involutions in $A_n$, $F_4$ and $G_2$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {82--105},
year = {2013},
volume = {414},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a4/}
}
TY - JOUR AU - D. Yu. Eliseev AU - M. V. Ignat'ev TI - Kostant–Kumar polynomials and tangent cones to Schubert varieties for involutions in $A_n$, $F_4$ and $G_2$ JO - Zapiski Nauchnykh Seminarov POMI PY - 2013 SP - 82 EP - 105 VL - 414 UR - http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a4/ LA - ru ID - ZNSL_2013_414_a4 ER -
%0 Journal Article %A D. Yu. Eliseev %A M. V. Ignat'ev %T Kostant–Kumar polynomials and tangent cones to Schubert varieties for involutions in $A_n$, $F_4$ and $G_2$ %J Zapiski Nauchnykh Seminarov POMI %D 2013 %P 82-105 %V 414 %U http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a4/ %G ru %F ZNSL_2013_414_a4
D. Yu. Eliseev; M. V. Ignat'ev. Kostant–Kumar polynomials and tangent cones to Schubert varieties for involutions in $A_n$, $F_4$ and $G_2$. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 25, Tome 414 (2013), pp. 82-105. http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a4/
[1] M. A. Bochkarëv, “Kasatelnye konusy mnogoobrazii Shuberta”, Tretya mezhdunar. shkola-konferentsiya “Algebry Li, algebraicheskie gruppy i teoriya invariantov”, posv. 75-letiyu E. B. Vinberga (Tolyatti, Rossiya, 25–30 iyunya 2012 g.), Tez. dokl., izd-vo TGU, Tolyatti, 2012, 12–13
[2] N. Burbaki, Gruppy Li i algebry Li, Glavy 4–6, Mir, M., 1972
[3] D. Yu. Eliseev, M. V. Ignatev, “Mnogochleny Kostanta i kasatelnye konusy k mnogoobraziyam Shuberta”, Tretya mezhdunar. shkola-konferentsiya “Algebry Li, algebraicheskie gruppy i teoriya invariantov”, posv. 75-letiyu E. B. Vinberga (Tolyatti, Rossiya, 25–30 iyunya 2012 g.), Tez. dokl., izd-vo TGU, Tolyatti, 2012, 24–25
[4] D. Yu. Eliseev, A. N. Panov, “Kasatelnye konusy mnogoobrazii Shuberta dlya $A_n$ malogo ranga”, Zap. nauchn. semin. POMI, 394, 2011, 218–225 ; arXiv: 1109.0399[math.RT] | MR
[5] M. V. Ignatev, “Poryadok Bryua–Shevalle na involyutsiyakh v giperoktaedralnoi gruppe i kombinatorika zamykanii $B$-orbit”, Zap. nauchn. semin. POMI, 400, 2012, 166–188 ; arXiv: 1112.2624[math.RT] | MR
[6] A. A. Kirillov, “Unitarnye predstavleniya nilpotentnykh grupp Li”, Uspekhi mat. nauk, 17:4 (1962), 57–110 | MR | Zbl
[7] A. A. Kirillov, Lektsii po metodu orbit, Nauchnaya kniga (IDMI), Novosibirsk, 2002
[8] Dzh. Khamfri, Lineinye algebraicheskie gruppy, Nauka, M., 1980 | MR
[9] S. Billey, “Kostant polynomials and the cohomology ring for $G/B$”, Duke Math. J., 96 (1999), 205–224 | DOI | MR | Zbl
[10] S. Billey, V. Lakshmibai, Singular loci of Schubert varieties, Progr. in Math., 182, Birkhäuser, 2000 | MR | Zbl
[11] M. Dyer, “The nil-Hecke ring and Deodhar's conjecture on Bruhat intervals”, Invent. Math., 111 (1993), 571–574 | DOI | MR | Zbl
[12] J. Humphreys, Reflection groups and Coxeter groups, Cambridge University Press, Cambridge, 1992 | MR | Zbl
[13] M. V. Ignatyev, “Combinatorics of $B$-orbits and the Bruhat–Chevalley order on involutions”, Transformation Groups, 17:3 (2012), 747–780 ; arXiv: 1101.2189[math.RT] | DOI | MR | Zbl
[14] F. Incitti, Bruhat order on the involutions of classical Weyl groups, Ph. D. thesis. Dip. di Mat. “Guido Castelnuovo”, Università di Roma “La Sapienza”, 2003
[15] B. Kostant, S. Kumar, “The nil-Hecke ring and cohomology of $G/P$ for a Kac–Moody group $G$”, Adv. Math., 62 (1986), 187–237 | DOI | MR | Zbl
[16] B. Kostant, S. Kumar, “$T$-equivariant $K$-theory of generalized flag varieties”, J. Diff. Geom., 32 (1990), 549–603 | MR | Zbl
[17] S. Kumar, “The nil-Hecke ring and singularity of Schubert varieties”, Invent. Math., 123 (1996), 471–506 | DOI | MR | Zbl
[18] W. A. Stein et al., book Sage Mathematics Software, Version 4.6.1, The Sage Development Team, 2011 available at http://www.sagemath.org