@article{ZNSL_2013_414_a3,
author = {P. Zusmanovich},
title = {A compendium of {Lie} structures on tensor products},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {40--81},
year = {2013},
volume = {414},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a3/}
}
P. Zusmanovich. A compendium of Lie structures on tensor products. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 25, Tome 414 (2013), pp. 40-81. http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a3/
[1] C. Bai, D. Meng, “The classification of Novikov algebras in low dimensions”, J. Phys. A, 34 (2001), 1581–1594 | DOI | MR | Zbl
[2] C. Bai, D. Meng, L. He, “On fermionic Novikov algebras”, J. Phys. A, 35 (2002), 10053–10063 | DOI | MR | Zbl
[3] Soviet Math. Dokl., 32 (1985), 228–231 | MR | Zbl
[4] G. Benkart, E. Neher, “The centroid of extended affine and root graded Lie algebras”, J. Pure Appl. Algebra, 205 (2006), 117–145 ; arXiv: math/0502561 | DOI | MR | Zbl
[5] G. Benkart, J. M. Osborn, “Flexible Lie-admissible algebras”, J. Algebra, 71 (1981), 11–31 | DOI | MR | Zbl
[6] F. A. Berezin, Introduction to Superanalysis, with an appendix, Seminar on Supersymmetry, 1$\frac12$, 2nd revised ed., ed. D. Leites, MCCME (to appear) (in Russian) | MR
[7] S. Bouarroudj, A. Lebedev, D. Leites, I. Shchepochkina, Deforms of Lie algebras in characteristic 2: semi-trivial for Jurman algebras, non-trivial for Kaplansky algebras, arXiv: 1301.2781v1
[9] J. L. Cathelineau, “Homologie de degré trois d'algèbres de Lie simple déployées étendues à une algèbre commutative”, Enseign. Math., 33 (1987), 159–173 ; “Correction”, Algebra i Logika, 28:2 (1989), 241 (in Russian) | MR | Zbl | MR | Zbl
[10] Algebra and Logic, 24:1 (1985), 1–7 ; “Correction”, Algebra and Logic, 28:2 (1989), 162 | DOI | DOI | MR | MR | Zbl | Zbl
[11] Math. USSR Sbornik, 66:2 (1990), 461–473 | DOI | MR | Zbl | Zbl
[12] A. S. Dzhumadil'daev, “Codimension growth and non-Koszulity of Novikov operad”, Comm. Algebra, 39 (2011), 2943–2952 ; loosely corresponds to: arXiv: + 0902.31870902.3771 | DOI | MR | Zbl
[13] R. Farnsteiner, H. Strade, “Shapiro's lemma and its consequences in the cohomology theory of modular Lie algebras”, Math. Z., 206 (1991), 153–168 | DOI | MR | Zbl
[14] J. Feldvoss, H. Strade, “Restricted Lie algebras with bounded cohomology and related classes of algebras”, Manuscr. Math., 74 (1992), 47–67 | DOI | MR | Zbl
[15] Funct. Anal. Appl., 13 (1979), 248–262 | DOI | MR | Zbl
[16] Russ. Math. Surv., 23:2 (1968), 1–58 | DOI | MR | Zbl
[17] V. Ginzburg, M. Kapranov, “Koszul duality for operads”, Duke Math. J., 76 (1994), 203–272 ; “Erratum”, Duke Math. J., 80 (1995), 293 ; 0709.1228 | DOI | MR | Zbl | DOI | MR | Zbl
[18] A. Grishkov, “On simple Lie algebras over a field of characteristic 2”, J. Algebra, 363 (2012), 14–18 | DOI | MR | Zbl
[19] P. Grozman, D. Leites, I. Shchepochkina, “Lie superalgebras of string theories”, Acta Math. Vietnam., 26 (2001), 27–63 ; arXiv: hep-th/9702120 | MR | Zbl
[20] H. Gündoğan, Lie algebras of smooth sections, Diploma Thesis, Technische Univ. Darmstadt, 2007; arXiv: 0803.2800v4
[21] J. Hartwig, D. Larsson, S. Silvestrov, “Deformations of Lie algebras using $\sigma$-derivations”, J. Algebra, 295 (2006), 314–361 ; arXiv: math/0408064 | DOI | MR | Zbl
[22] A. Heller, I. Reiner, “Indecomposable representations”, Illinois J. Math., 5 (1961), 314–323 | MR | Zbl
[23] N. Jacobson, Lie Algebras, Dover, 1979, reprint of Interscience Publ., 1962 | MR
[24] K. Jeong, S.-J. Kang, H. Lee, “Lie-admissible algebras and Kac-Moody algebras”, J. Algebra, 197 (1997), 492–505 | DOI | MR | Zbl
[25] Q. Jin, X. Li, “Hom-Lie algebra structures on semi-simple Lie algebras”, J. Algebra, 319 (2008), 1398–1408 | DOI | MR | Zbl
[26] G. Jurman, “A family of simple Lie algebras in characteristic two”, J. Algebra, 271 (2004), 454–481 | DOI | MR | Zbl
[27] V. G. Kac, Infinite Dimensional Lie Algebras, 3rd ed., Cambridge Univ. Press, 1995 | MR
[28] V. G. Kac, J. W. van de Leur, “On classification of superconformal algebras”, Strings' 88, eds. S. J. Gates, C. R. Preitschopf, W. Siegel, World Scientific, 1989, 77–106 | MR | Zbl
[29] J. Math. Sci., 100 (2000), 1944–2002 | DOI | MR | Zbl
[30] F. Kubo, “Non-commutative Poisson algebra structures on affine Kac-Moody algebras”, J. Pure Appl. Algebra, 126 (1998), 267–286 | DOI | MR | Zbl
[31] F. Kubo, “Compatible algebra structures of Lie algebras”, Ring Theory 2007, eds. H. Marubayashi et al., World Scientific, 2008, 235–239 | MR
[32] P. B. A. Lecomte, C. Roger, “Rigidity of current Lie algebras of complex simple Lie type”, J. London Math. Soc., 37 (1988), 232–240 | DOI | MR | Zbl
[33] J. Soviet Math., 3 (1975), 636–653 | DOI | MR | Zbl
[34] Y. Pei, C. Bai, “Realizations of conformal current-type Lie algebras”, J. Math. Phys., 51 (2010), 052302 | DOI | MR
[35] Y. Pei, C. Bai, “Novikov algebras and Schrödinger-Virasoro Lie algebras”, J. Phys. A, 44 (2011), 045201 | DOI | MR | Zbl
[36] H. Strade, Lie Algebras over Fields of Positive Characteristic, v. I, Structure Theory, de Gruyter, 2004 | MR | Zbl
[37] P. Zusmanovich, “Low-dimensional cohomology of current Lie algebras and analogs of the Riemann tensor for loop manifolds”, Lin. Algebra Appl., 407 (2005), 71–104 ; arXiv: math/0302334 | DOI | MR | Zbl
[38] P. Zusmanovich, “A converse to the Whitehead Theorem”, J. Lie Theory, 18 (2008), 811–815 ; arXiv: 0808.0212 | MR | Zbl
[39] P. Zusmanovich, “Invariants of current Lie algebras extended over commutative algebras without unit”, J. Nonlin. Math. Phys., 17, Suppl. 1, Special issue in memory of F. A. Berezin (2010), 87–102 ; arXiv: 0901.1395 | DOI | MR
[40] P. Zusmanovich, “Non-existence of invariant symmetric forms on generalized Jacobson–Witt algebras revisited”, Comm. Algebra, 39 (2011), 548–554 ; arXiv: 0902.0038 | DOI | MR | Zbl