Infinite groups with rank restrictions on subgroups
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 25, Tome 414 (2013), pp. 31-39 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Classical results by Mal'cev and Šunkov show that locally nilpotent groups and locally finite groups of infinite rank must contain some abelian subgroups of infinite rank. In recent years, many authors have studied groups in which all subgroups of infinite rank have a given property (which can be either absolute or of embedding type). Results from these researches and some new contributions to this topic are described in this paper.
@article{ZNSL_2013_414_a2,
     author = {F. de Giovanni},
     title = {Infinite groups with rank restrictions on subgroups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {31--39},
     year = {2013},
     volume = {414},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a2/}
}
TY  - JOUR
AU  - F. de Giovanni
TI  - Infinite groups with rank restrictions on subgroups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 31
EP  - 39
VL  - 414
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a2/
LA  - en
ID  - ZNSL_2013_414_a2
ER  - 
%0 Journal Article
%A F. de Giovanni
%T Infinite groups with rank restrictions on subgroups
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 31-39
%V 414
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a2/
%G en
%F ZNSL_2013_414_a2
F. de Giovanni. Infinite groups with rank restrictions on subgroups. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 25, Tome 414 (2013), pp. 31-39. http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a2/

[1] N. S. Černikov, “A theorem on groups of finite special rank”, Ukrain. Math. J., 42 (1990), 855–861 | DOI | MR

[2] M. De Falco, F. de Giovanni, C. Musella, “Groups whose finite homomorphic images are metahamiltonian”, Comm. Algebra, 37 (2009), 2468–2476 | DOI | MR | Zbl

[3] M. De Falco, F. de Giovanni, C. Musella, “Groups whose proper subgroups of infinite rank have a transitive normality relation”, Mediterranean J. Math. (to appear)

[4] M. De Falco, F. de Giovanni, C. Musella, Y. P. Sysak, On metahamiltonian groups of infinite rank (to appear)

[5] M. De Falco, F. de Giovanni, C. Musella, Y. P. Sysak, “Groups of infinite rank in which normality is a transitive relation”, Glasgow Math. J. (to appear)

[6] M. De Falco, F. de Giovanni, C. Musella, N. Trabelsi, “Groups with restrictions on subgroups of infinite rank”, Rev. Mat. Iberoamericana (to appear)

[7] M. De Falco, F. de Giovanni, C. Musella, N. Trabelsi, “Groups whose proper subgroups of infinite rank have finite conjugacy classes”, Bull. Austral. Math. Soc. (to appear)

[8] M. R. Dixon, M. J. Evans, H. Smith, “Locally (soluble-by-finite) groups with all proper insoluble subgroups of finite rank”, Arch. Math. (Basel), 68 (1997), 100–109 | DOI | MR | Zbl

[9] M. R. Dixon, M. J. Evans, H. Smith, “Locally (soluble-by-finite) groups with all proper non-nilpotent subgroups of finite rank”, J. Pure Appl. Algebra, 135 (1999), 33–43 | DOI | MR | Zbl

[10] M. R. Dixon, Y. Karatas, “Groups with all subgroups permutable or of finite rank”, Centr. Eur. J. Math., 10 (2012), 950–957 | DOI | MR | Zbl

[11] M. J. Evans, Y. Kim, “On groups in which every subgroup of infinite rank is subnormal of bounded defect”, Comm. Algebra, 32 (2004), 2547–2557 | DOI | MR | Zbl

[12] B. Hartley, “Uncountable artinian modules and uncountable soluble groups satisfying Min-$n$”, Proc. London Math. Soc., 35 (1977), 55–75 | DOI | MR | Zbl

[13] L. A. Kurdachenko, H. Smith, “Groups in which all subgroups of infinite rank are subnormal”, Glasgow Math. J., 46 (2004), 83–89 | DOI | MR | Zbl

[14] Amer. Math. Soc. Translations, 2 (1956), 1–21 | MR | MR | Zbl

[15] D. McDougall, “Soluble groups with the minimum condition for normal subgroups”, Math. Z., 118 (1970), 157–167 | DOI | MR | Zbl

[16] Y. I. Merzljakov, “Locally soluble groups of finite rank”, Algebra and Logic, 8 (1969), 686–690 | MR | Zbl

[17] W. Möhres, “Auflösbarkeit, von Gruppen, deren Untergruppen alle subnormal sind”, Arch. Math. (Basel), 54 (1990), 232–235 | DOI | MR | Zbl

[18] B. H. Neumann, “Groups with finite classes of conjugate subgroups”, Math. Z., 63 (1955), 76–96 | DOI | MR | Zbl

[19] D. J. S. Robinson, “Groups in which normality is a transitive relation”, Proc. Cambridge Philos. Soc., 68 (1964), 21–38 | DOI | MR

[20] D. J. S. Robinson, Finiteness Conditions and Generalized Soluble Groups, Springer, Berlin, 1972 | Zbl

[21] G. M. Romalis, N. F. Sesekin, “Metahamiltonian groups”, Ural. Gos. Univ. Mat. Zap., 5, 1966, 101–106 | MR | Zbl

[22] G. M. Romalis, N. F. Sesekin, “Metahamiltonian groups. II”, Ural. Gos. Univ. Mat. Zap., 6, 1968, 52–58 | MR

[23] G. M. Romalis, N. F. Sesekin, “Metahamiltonian groups. III”, Ural. Gos. Univ. Mat. Zap., 7, 1969/70, 195–199 | MR

[24] J. E. Roseblade, “On groups in which every subgroup is subnormal”, J. Algebra, 2 (1965), 402–412 | DOI | MR | Zbl

[25] R. Schmidt, Subgroup Lattices of Groups, de Gruyter, Berlin, 1994 | MR | Zbl

[26] N. N. Semko, S. N. Kuchmenko, “Groups with almost normal subgroups of infinite rank”, Ukrain. Math. J., 57 (2005), 621–639 | DOI | MR | Zbl

[27] V. P. Šunkov, “On locally finite groups of finite rank”, Algebra and Logic, 10 (1971), 127–142 | DOI | MR