Infinite groups with rank restrictions on subgroups
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 25, Tome 414 (2013), pp. 31-39

Voir la notice de l'article provenant de la source Math-Net.Ru

Classical results by Mal'cev and Šunkov show that locally nilpotent groups and locally finite groups of infinite rank must contain some abelian subgroups of infinite rank. In recent years, many authors have studied groups in which all subgroups of infinite rank have a given property (which can be either absolute or of embedding type). Results from these researches and some new contributions to this topic are described in this paper.
@article{ZNSL_2013_414_a2,
     author = {F. de Giovanni},
     title = {Infinite groups with rank restrictions on subgroups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {31--39},
     publisher = {mathdoc},
     volume = {414},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a2/}
}
TY  - JOUR
AU  - F. de Giovanni
TI  - Infinite groups with rank restrictions on subgroups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 31
EP  - 39
VL  - 414
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a2/
LA  - en
ID  - ZNSL_2013_414_a2
ER  - 
%0 Journal Article
%A F. de Giovanni
%T Infinite groups with rank restrictions on subgroups
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 31-39
%V 414
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a2/
%G en
%F ZNSL_2013_414_a2
F. de Giovanni. Infinite groups with rank restrictions on subgroups. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 25, Tome 414 (2013), pp. 31-39. http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a2/