@article{ZNSL_2013_414_a2,
author = {F. de Giovanni},
title = {Infinite groups with rank restrictions on subgroups},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {31--39},
year = {2013},
volume = {414},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a2/}
}
F. de Giovanni. Infinite groups with rank restrictions on subgroups. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 25, Tome 414 (2013), pp. 31-39. http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a2/
[1] N. S. Černikov, “A theorem on groups of finite special rank”, Ukrain. Math. J., 42 (1990), 855–861 | DOI | MR
[2] M. De Falco, F. de Giovanni, C. Musella, “Groups whose finite homomorphic images are metahamiltonian”, Comm. Algebra, 37 (2009), 2468–2476 | DOI | MR | Zbl
[3] M. De Falco, F. de Giovanni, C. Musella, “Groups whose proper subgroups of infinite rank have a transitive normality relation”, Mediterranean J. Math. (to appear)
[4] M. De Falco, F. de Giovanni, C. Musella, Y. P. Sysak, On metahamiltonian groups of infinite rank (to appear)
[5] M. De Falco, F. de Giovanni, C. Musella, Y. P. Sysak, “Groups of infinite rank in which normality is a transitive relation”, Glasgow Math. J. (to appear)
[6] M. De Falco, F. de Giovanni, C. Musella, N. Trabelsi, “Groups with restrictions on subgroups of infinite rank”, Rev. Mat. Iberoamericana (to appear)
[7] M. De Falco, F. de Giovanni, C. Musella, N. Trabelsi, “Groups whose proper subgroups of infinite rank have finite conjugacy classes”, Bull. Austral. Math. Soc. (to appear)
[8] M. R. Dixon, M. J. Evans, H. Smith, “Locally (soluble-by-finite) groups with all proper insoluble subgroups of finite rank”, Arch. Math. (Basel), 68 (1997), 100–109 | DOI | MR | Zbl
[9] M. R. Dixon, M. J. Evans, H. Smith, “Locally (soluble-by-finite) groups with all proper non-nilpotent subgroups of finite rank”, J. Pure Appl. Algebra, 135 (1999), 33–43 | DOI | MR | Zbl
[10] M. R. Dixon, Y. Karatas, “Groups with all subgroups permutable or of finite rank”, Centr. Eur. J. Math., 10 (2012), 950–957 | DOI | MR | Zbl
[11] M. J. Evans, Y. Kim, “On groups in which every subgroup of infinite rank is subnormal of bounded defect”, Comm. Algebra, 32 (2004), 2547–2557 | DOI | MR | Zbl
[12] B. Hartley, “Uncountable artinian modules and uncountable soluble groups satisfying Min-$n$”, Proc. London Math. Soc., 35 (1977), 55–75 | DOI | MR | Zbl
[13] L. A. Kurdachenko, H. Smith, “Groups in which all subgroups of infinite rank are subnormal”, Glasgow Math. J., 46 (2004), 83–89 | DOI | MR | Zbl
[14] Amer. Math. Soc. Translations, 2 (1956), 1–21 | MR | MR | Zbl
[15] D. McDougall, “Soluble groups with the minimum condition for normal subgroups”, Math. Z., 118 (1970), 157–167 | DOI | MR | Zbl
[16] Y. I. Merzljakov, “Locally soluble groups of finite rank”, Algebra and Logic, 8 (1969), 686–690 | MR | Zbl
[17] W. Möhres, “Auflösbarkeit, von Gruppen, deren Untergruppen alle subnormal sind”, Arch. Math. (Basel), 54 (1990), 232–235 | DOI | MR | Zbl
[18] B. H. Neumann, “Groups with finite classes of conjugate subgroups”, Math. Z., 63 (1955), 76–96 | DOI | MR | Zbl
[19] D. J. S. Robinson, “Groups in which normality is a transitive relation”, Proc. Cambridge Philos. Soc., 68 (1964), 21–38 | DOI | MR
[20] D. J. S. Robinson, Finiteness Conditions and Generalized Soluble Groups, Springer, Berlin, 1972 | Zbl
[21] G. M. Romalis, N. F. Sesekin, “Metahamiltonian groups”, Ural. Gos. Univ. Mat. Zap., 5, 1966, 101–106 | MR | Zbl
[22] G. M. Romalis, N. F. Sesekin, “Metahamiltonian groups. II”, Ural. Gos. Univ. Mat. Zap., 6, 1968, 52–58 | MR
[23] G. M. Romalis, N. F. Sesekin, “Metahamiltonian groups. III”, Ural. Gos. Univ. Mat. Zap., 7, 1969/70, 195–199 | MR
[24] J. E. Roseblade, “On groups in which every subgroup is subnormal”, J. Algebra, 2 (1965), 402–412 | DOI | MR | Zbl
[25] R. Schmidt, Subgroup Lattices of Groups, de Gruyter, Berlin, 1994 | MR | Zbl
[26] N. N. Semko, S. N. Kuchmenko, “Groups with almost normal subgroups of infinite rank”, Ukrain. Math. J., 57 (2005), 621–639 | DOI | MR | Zbl
[27] V. P. Šunkov, “On locally finite groups of finite rank”, Algebra and Logic, 10 (1971), 127–142 | DOI | MR