Unipotent elements of nonprime order in representations of the classical algebraic groups: two big Jordan blocks
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 25, Tome 414 (2013), pp. 193-241
Voir la notice de l'article provenant de la source Math-Net.Ru
For irreducible rational representations of the classical algebraic groups in characteristic $p>2$ that are not equivalent to a composition of a group morphism and the standard representation, it is proved that usually the image of a unipotent element of order $p^{s+1}>p$ has at least two Jordan blocks of size $>p^s$; all exceptions are indicated explicitly. As a corollary, irreducible rational representations of these groups whose images contain unipotent elements with just one Jordan block of size $>1$ are classified.
@article{ZNSL_2013_414_a11,
author = {I. D. Suprunenko},
title = {Unipotent elements of nonprime order in representations of the classical algebraic groups: two big {Jordan} blocks},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {193--241},
publisher = {mathdoc},
volume = {414},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a11/}
}
TY - JOUR AU - I. D. Suprunenko TI - Unipotent elements of nonprime order in representations of the classical algebraic groups: two big Jordan blocks JO - Zapiski Nauchnykh Seminarov POMI PY - 2013 SP - 193 EP - 241 VL - 414 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a11/ LA - en ID - ZNSL_2013_414_a11 ER -
%0 Journal Article %A I. D. Suprunenko %T Unipotent elements of nonprime order in representations of the classical algebraic groups: two big Jordan blocks %J Zapiski Nauchnykh Seminarov POMI %D 2013 %P 193-241 %V 414 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a11/ %G en %F ZNSL_2013_414_a11
I. D. Suprunenko. Unipotent elements of nonprime order in representations of the classical algebraic groups: two big Jordan blocks. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 25, Tome 414 (2013), pp. 193-241. http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a11/