Improved stability for odd-dimensional orthogonal group
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 25, Tome 414 (2013), pp. 181-192 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For a commutative ring $R$ satisfying the condition $\mathrm{sr}(R)\leq n$ and a root system $\Phi_l$ of type $B_n$ or $C_n$ we compute the kernel of the stabilization map $\mathrm K_1(\Phi_n,R)\to\mathrm K_1(\Phi_{n+1},R)$.
@article{ZNSL_2013_414_a10,
     author = {S. Sinchuk},
     title = {Improved stability for odd-dimensional orthogonal group},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {181--192},
     year = {2013},
     volume = {414},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a10/}
}
TY  - JOUR
AU  - S. Sinchuk
TI  - Improved stability for odd-dimensional orthogonal group
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 181
EP  - 192
VL  - 414
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a10/
LA  - ru
ID  - ZNSL_2013_414_a10
ER  - 
%0 Journal Article
%A S. Sinchuk
%T Improved stability for odd-dimensional orthogonal group
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 181-192
%V 414
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a10/
%G ru
%F ZNSL_2013_414_a10
S. Sinchuk. Improved stability for odd-dimensional orthogonal group. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 25, Tome 414 (2013), pp. 181-192. http://geodesic.mathdoc.fr/item/ZNSL_2013_414_a10/

[1] L. N. Vasershtein, “O stabilizatsii obschei lineinoi gruppy nad koltsom”, Mat. Sb., 79(121):3 (1969), 405–424 | MR | Zbl

[2] L. N. Vasershtein, “Stabilizatsiya unitarnykh i ortogonalnykh grupp nad koltsami s involyutsiei”, Mat. Sb., 81(123):3 (1970), 328–351 | MR | Zbl

[3] A. Bak, V. A. Petrov, G. Tang, “Stability for quadratic $\mathrm K_1$”, $\mathrm K$-theory, 30:1 (2003), 1–11 | DOI | MR | Zbl

[4] H. Bass, Algebraic $\mathrm K$-theory, Benjamin, Inc., New York, 1968 | MR | Zbl

[5] R. Basu, R. Rao, “Injective Stability for $\mathrm K_1$ of classical modules”, J. Algebra, 323:4 (2010), 867–877 | DOI | MR | Zbl

[6] A. J. Hahn, O. T. O'Meara, The classical groups and K-theory, Grundl. Math. Wiss., 291, Springer, Berlin et. al, 1989 | MR | Zbl

[7] W. van der Kallen, “Vaserstein prestability theorem for commutative rings”, Commun. Algebra, 15:3 (1987), 657–663 | DOI | MR | Zbl

[8] M. A. Knus, Quadratic and Hermitian Forms over Rings, Grundl. Math. Wiss., 294, Springer, Berlin, 1991 | MR | Zbl

[9] H. Matsumoto, “Sur les sous-groupes arithmétiques des groupes semi-simples déployés”, Ann. Sci. École Norm. Sup., 4:2 (1969), 1–62 | MR | Zbl

[10] R. Rao, W. van der Kallen, “Improved stability for $\mathrm{SK}_1$ and $\mathrm{WMS}_d$ of a non-singular affine algebra”, Astérisque, 226 (1994), 411–420 | MR | Zbl

[11] R. Rao, R. Basu, S. Jose, “Injective stability for $\mathrm K_1$ of orthogonal group”, J. Algebra, 323:2 (2010), 393–396 | DOI | MR | Zbl

[12] Zh.-P. Serr, Kogomologii Galua, Mir, M., 1968 | MR | Zbl

[13] S. Sinchuk, “Injective stability for unitary $\mathrm K_1$, revisited”, J. $\mathrm K$-theory, 11:2 (2013), 233–242 | DOI | MR | Zbl

[14] M. R. Stein, “Generators, relations and coverings of Chevalley groups over commutative rings”, Amer. J. Math., 93:4 (1971), 965–1004 | DOI | MR | Zbl

[15] M. R. Stein, “Stability theorems for $\mathrm K_1$, $\mathrm K_2$ and related functors modeled on Chevalley groups”, Japan. J. Math., 4:1 (1978), 77–108 | MR | Zbl