Ramification jump in model extensions of degree $p$
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 24, Tome 413 (2013), pp. 183-218 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An extension of complete dicrete valuation fields with imperfect residue fields is naturally viewed as an epimorphism between algebraic surfaces with distinguished point. Each regular curve that meets this point with irreducible preimage gives rise to an extension of fields of functions. In this paper a ramification jump of this extension is considered as a function of a jet of a curve. After a topology on a set of jets is introduced, lower semicontinuity and existence of common value for the jump are proved.
@article{ZNSL_2013_413_a9,
     author = {I. Faizov},
     title = {Ramification jump in model extensions of degree~$p$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {183--218},
     year = {2013},
     volume = {413},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_413_a9/}
}
TY  - JOUR
AU  - I. Faizov
TI  - Ramification jump in model extensions of degree $p$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 183
EP  - 218
VL  - 413
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_413_a9/
LA  - ru
ID  - ZNSL_2013_413_a9
ER  - 
%0 Journal Article
%A I. Faizov
%T Ramification jump in model extensions of degree $p$
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 183-218
%V 413
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_413_a9/
%G ru
%F ZNSL_2013_413_a9
I. Faizov. Ramification jump in model extensions of degree $p$. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 24, Tome 413 (2013), pp. 183-218. http://geodesic.mathdoc.fr/item/ZNSL_2013_413_a9/

[1] L. Xiao, I. B. Zhukov, Ramification of Higher Local Fields, Approaches and Questions, Preprint, 2012 | MR

[2] A. Campillo, Algebroid Curves in Positive Characteristic, Springer-Verlag, New York, 1980 | MR | Zbl

[3] G.-M. Greuel, C. Lossen, E. Shustin, Introduction to Singularities and Deformations, Springer, 2007 | MR | Zbl

[4] I. B. Zhukov, “Ramification of surfaces: Artin–Schreier extensions”, Algebraic Number Theory and Algebraic Geometry, Contemp. Math., 300, Amer. Math. Soc., Providence, RI, 2002, 211–220 | DOI | MR | Zbl

[5] I. B. Zhukov, “Poluglobalnye modeli rasshirenii dvumernykh lokalnykh polei”, Vestnik S.-Peterb. un-ta. Ser. matem., mekh., astron., 1 (2010), 33–38 | MR | Zbl

[6] J.-P. Serre, Local Fields, Springer, New York, 1979 | MR | Zbl

[7] T. T. Moh, “Galois theory of power series rings in characteristic $p$”, Amer. J. Math., 92 (1970), 919–950 | DOI | MR | Zbl

[8] I. B. Zhukov, Kommutativnaya algebra, Izd. S.-Peterburgskogo universiteta, 2009

[9] C. T. C. Wall, Singular Points of Plane Curves, Cambridge University Press, 2004 | MR