On exact formulas for the number of integral points
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 24, Tome 413 (2013), pp. 173-182
Cet article a éte moissonné depuis la source Math-Net.Ru
Exact formulas for the number of integral points in certain ellipses are obtained. These formulas generalize a formula of Eisenstein and belong to a rare type of exact formulas for the number of lattice points in curvilinear domains. The obtained formulas can be useful when studying the Riemann–Roch problem for arithmetic varieties.
@article{ZNSL_2013_413_a8,
author = {A. Smirnov},
title = {On exact formulas for the number of integral points},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {173--182},
year = {2013},
volume = {413},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_413_a8/}
}
A. Smirnov. On exact formulas for the number of integral points. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 24, Tome 413 (2013), pp. 173-182. http://geodesic.mathdoc.fr/item/ZNSL_2013_413_a8/
[1] E. Ehrhart, “Sur une problème de géométrie diophantine linéaire”, J. für die reine und angew. Math., 226 (1967), 1–29 | MR | Zbl
[2] S. E. Cappell, J. L. Shaneson, “Genera of algebraic varieties and counting of lattice points”, Bulletin (New Series) Amer. Math. Soc., 30:1, Jan. (1994), 62–69 | DOI | MR | Zbl
[3] G. Eisenstein, “Geometrischer Beweis des Fundamentaltheorems für die quadratischen Reste”, J. für die reine und angew. Math., 28 (1844), 246–248 | DOI | Zbl