On exact formulas for the number of integral points
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 24, Tome 413 (2013), pp. 173-182
Voir la notice de l'article provenant de la source Math-Net.Ru
Exact formulas for the number of integral points in certain ellipses are obtained. These formulas generalize a formula of Eisenstein and belong to a rare type of exact formulas for the number of lattice points in curvilinear domains. The obtained formulas can be useful when studying the Riemann–Roch problem for arithmetic varieties.
@article{ZNSL_2013_413_a8,
author = {A. Smirnov},
title = {On exact formulas for the number of integral points},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {173--182},
publisher = {mathdoc},
volume = {413},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_413_a8/}
}
A. Smirnov. On exact formulas for the number of integral points. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 24, Tome 413 (2013), pp. 173-182. http://geodesic.mathdoc.fr/item/ZNSL_2013_413_a8/