On exact formulas for the number of integral points
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 24, Tome 413 (2013), pp. 173-182

Voir la notice de l'article provenant de la source Math-Net.Ru

Exact formulas for the number of integral points in certain ellipses are obtained. These formulas generalize a formula of Eisenstein and belong to a rare type of exact formulas for the number of lattice points in curvilinear domains. The obtained formulas can be useful when studying the Riemann–Roch problem for arithmetic varieties.
@article{ZNSL_2013_413_a8,
     author = {A. Smirnov},
     title = {On exact formulas for the number of integral points},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {173--182},
     publisher = {mathdoc},
     volume = {413},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_413_a8/}
}
TY  - JOUR
AU  - A. Smirnov
TI  - On exact formulas for the number of integral points
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 173
EP  - 182
VL  - 413
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_413_a8/
LA  - en
ID  - ZNSL_2013_413_a8
ER  - 
%0 Journal Article
%A A. Smirnov
%T On exact formulas for the number of integral points
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 173-182
%V 413
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_413_a8/
%G en
%F ZNSL_2013_413_a8
A. Smirnov. On exact formulas for the number of integral points. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 24, Tome 413 (2013), pp. 173-182. http://geodesic.mathdoc.fr/item/ZNSL_2013_413_a8/