Serial group rings of finite groups. $p$-nilpotency
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 24, Tome 413 (2013), pp. 134-152 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We prove that for every finite $p$-nilpotent group $G$ with a cyclic $p$-Sylow subgroup and any field of characteristic $p$, the group ring $FG$ is serial. As a corollary we show that the group ring of a finite group oven an arbitrary field of characteristic $2$ is serial if and only if its $2$-Sylow subgroup is cyclic.
@article{ZNSL_2013_413_a6,
     author = {A. V. Kukharev and G. E. Puninski},
     title = {Serial group rings of finite groups. $p$-nilpotency},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {134--152},
     year = {2013},
     volume = {413},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_413_a6/}
}
TY  - JOUR
AU  - A. V. Kukharev
AU  - G. E. Puninski
TI  - Serial group rings of finite groups. $p$-nilpotency
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 134
EP  - 152
VL  - 413
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_413_a6/
LA  - ru
ID  - ZNSL_2013_413_a6
ER  - 
%0 Journal Article
%A A. V. Kukharev
%A G. E. Puninski
%T Serial group rings of finite groups. $p$-nilpotency
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 134-152
%V 413
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_413_a6/
%G ru
%F ZNSL_2013_413_a6
A. V. Kukharev; G. E. Puninski. Serial group rings of finite groups. $p$-nilpotency. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 24, Tome 413 (2013), pp. 134-152. http://geodesic.mathdoc.fr/item/ZNSL_2013_413_a6/

[1] J. L. Alperin, Local Representation Theory, Cambridge University Press, 1986 | MR | Zbl

[2] F. W. Anderson, K. R. Fuller, Rings and Categories of Modules, Springer Graduate Texts in Math., 13, 2d ed., 1992 | DOI | MR

[3] Y. Baba, K. Oshiro, Classical Artinian Rings, World Scient. Publ., 2009

[4] C. W. Curtis, I. Reiner, Methods of Representation Theory with Applications to Finite Groups and Orders, v. 1, Wiley-Interscience, 1981 | MR | Zbl

[5] J. Gonzáles-Sánchez, “A $p$-nilpotency criterion”, Arch. Math., 94 (2010), 201–205 | DOI | MR

[6] K. Feis, Algebra: koltsa, moduli i kategorii, v. 2, Mir, Moskva, 1979 | MR

[7] M. Hazewinkel, N. Gubareni, V. V. Kirichenko, Algebras, Rings and Modules, v. 1, Kluwer, 2004 | Zbl

[8] D. G. Higman, “Indecomposable representations at characteristic $p$”, Duke J. Math., 21 (1954), 377–381 | DOI | MR | Zbl

[9] G. Hiss, C. Jansen, K. Lux, P. Parker, Computational Modular Character Theory, http://www.math.rwth-aachen.de/homes/MOC/

[10] G. J. Janusz, “Indecomposable modules for finite groups”, Ann. Math., 89 (1969), 209–241 | DOI | MR | Zbl

[11] T. Y. Lam, Lectures on Modules and Rings, Springer Graduate Texts in Math., 189, 1999 | DOI | MR | Zbl

[12] T. Y. Lam, A First Course in Noncommutative Rings, Springer Graduate Texts in Math., 131, 2001 | DOI | MR

[13] L. S. Levy, J. C. Robson, Hereditary Noetherian Prime Rings and Idealizers, AMS Math. Surveys and Monographs, 174, 2011 | DOI | MR | Zbl

[14] K. Morita, “On group rings over a modular field which possess radicals expressible as principal ideals”, Sci. Repts. Tokyo Daigaku, 4 (1951), 177–194 | MR | Zbl

[15] I. Murase, “Generalized uniserial group rings. I”, Sci. Papers College Gener. Educ. Univ. Tokyo, 15 (1965), 15–28 | MR | Zbl

[16] I. Murase, “Generalized uniserial group rings. II”, Sci. Papers College Gener. Educ. Univ. Tokyo, 15 (1965), 111–128 | MR | Zbl

[17] D. S. Passman, The Algebraic Structure of Group Rings, Krieger Publishing Company, 1985 | MR | Zbl

[18] R. Pirs, Assotsiativnye algebry, Mir, Moskva, 1986 | MR

[19] G. Puninski, Serial Rings, Kluwer, 2001 | MR | Zbl

[20] L. H. Rowen, Ring Theory, Academic Press, 1991 | MR | Zbl

[21] B. Srinivasan, “On the indecomposable representations of a certain class of groups”, Proc. Lond. Math. Soc., 10 (1960), 497–513 | DOI | MR | Zbl