The Shafarevich basis in higher dimensional local fields
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 24, Tome 413 (2013), pp. 115-133 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This paper presents a generalization of Shafarevich basis for $n$-dimensional local fields with perfect last residue field. We consider the group of principal units of such fields and construct its multiplicative basis.
@article{ZNSL_2013_413_a5,
     author = {E. V. Ikonnikova and E. V. Shaverdova},
     title = {The {Shafarevich} basis in higher dimensional local fields},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {115--133},
     year = {2013},
     volume = {413},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_413_a5/}
}
TY  - JOUR
AU  - E. V. Ikonnikova
AU  - E. V. Shaverdova
TI  - The Shafarevich basis in higher dimensional local fields
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 115
EP  - 133
VL  - 413
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_413_a5/
LA  - ru
ID  - ZNSL_2013_413_a5
ER  - 
%0 Journal Article
%A E. V. Ikonnikova
%A E. V. Shaverdova
%T The Shafarevich basis in higher dimensional local fields
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 115-133
%V 413
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_413_a5/
%G ru
%F ZNSL_2013_413_a5
E. V. Ikonnikova; E. V. Shaverdova. The Shafarevich basis in higher dimensional local fields. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 24, Tome 413 (2013), pp. 115-133. http://geodesic.mathdoc.fr/item/ZNSL_2013_413_a5/

[1] S. V. Vostokov, “Yavnaya konstruktsiya teorii polei klassov mnogomernogo lokalnogo polya”, Izv. AN SSSR. Ser. matem., 49:2 (1985), 283–308 | MR | Zbl

[2] S. V. Vostokov, “Sparivanie na $K$-gruppakh mnogomernykh polnykh polei”, Trudy S.-Peterburg. matem. obschestva, 3, 1994, 140–184 | MR

[3] I. B. Zhukov, A. I. Madunts, “Additivnye i multiplikativnye razlozheniya v mnogomernykh lokalnykh polyakh”, Zap. nauchn. semin. POMI, 272, 2000, 186–196 | MR | Zbl

[4] A. I. Madunts, Skhodimost posledovatelnostei i ryadov v mnogomernykh polnykh polyakh, Kandidatskaya dissertatsiya, SPbGU, 1995

[5] S. V. Vostokov, “Kanonicheskii bazis Genzelya–Shafarevicha v polnykh diskretno-normirovannykh polyakh”, Zap. nauchn. semin. POMI, 394, 2011, 174–193 | MR

[6] I. B. Fesenko, S. V. Vostokov, Local fields and their extensions, AMS Bookstore, 2002 | MR | Zbl

[7] I. R. Shafarevich, “Obschii zakon vzaimnosti”, Matem. sb., 26(68):1 (1950), 113–146 | MR | Zbl