Ramification in elementary abelian extensions
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 24, Tome 413 (2013), pp. 106-114 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is devoted to some properites of ramification invariants in infinite abelian extensions of exponent $p$ for a class of complete discrete valuation fields that includes $2$-dimensional local fields of prime characteristic $p$. In particular, it is proved that the maximal such extension with prescribed upper bound of ramification breaks has finite depth of ramification, and this depth is computed.
@article{ZNSL_2013_413_a4,
     author = {I. B. Zhukov},
     title = {Ramification in elementary abelian extensions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {106--114},
     year = {2013},
     volume = {413},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_413_a4/}
}
TY  - JOUR
AU  - I. B. Zhukov
TI  - Ramification in elementary abelian extensions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 106
EP  - 114
VL  - 413
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_413_a4/
LA  - ru
ID  - ZNSL_2013_413_a4
ER  - 
%0 Journal Article
%A I. B. Zhukov
%T Ramification in elementary abelian extensions
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 106-114
%V 413
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_413_a4/
%G ru
%F ZNSL_2013_413_a4
I. B. Zhukov. Ramification in elementary abelian extensions. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 24, Tome 413 (2013), pp. 106-114. http://geodesic.mathdoc.fr/item/ZNSL_2013_413_a4/

[1] I. B. Fesenko, S. V. Vostokov, Local fields and their extensions. A constructive approach, Second edition, AMS, Providence, RI, 2002 | MR | Zbl

[2] O. Hyodo, “Wild ramification in the imperfect residue field case”, Adv. Stud. Pure Math., 12 (1987), 287–314 | MR | Zbl

[3] E. F. Lysenko, “Vetvlenie tsiklicheskogo rasshireniya stepeni $p^2$ polnogo diskretno normirovannogo polya prostoi kharakteristiki $p$ s nesovershennym polem vychetov”, Zap. nauchn. semin. POMI, 413, 2013, 153–172

[4] S. V. Vostokov, I. B. Zhukov, G. K. Pak, “Rasshireniya s pochti maksimalnoi glubinoi vetvleniya”, Zap. nauchn. semin. POMI, 265, 1999, 77–109 | MR | Zbl

[5] L. Xiao, I. Zhukov, Ramification in the imperfect residue field case, approaches and questions, http://math.usask.ca/fvk/Xiao-Zhukov.pdf