Commutators with some special elements in Chevalley groups
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 24, Tome 413 (2013), pp. 93-105 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $G=\widetilde G(K)$ where $\widetilde G$ is a simple and simply connected algebraic group that is defined and quasi-split over a field $K$. We consider commutators in $G$ with some regular elements. In particular, we prove (under some additional condition) that every unipotent regular element of $G$ is conjugate to a commutator $[g,v]$, where $g$ is any fixed semisimple regular element of $G$, and that every non-central element of $G$ is conjugate to a product $[g,\sigma][u_\mathrm{reg},\tau]$, where $g$ is some special element of the group $G$ and $u_\mathrm{reg}$ is some regular unipotent element of $G$.
@article{ZNSL_2013_413_a3,
     author = {N. Gordeev and E. W. Ellers},
     title = {Commutators with some special elements in {Chevalley} groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {93--105},
     year = {2013},
     volume = {413},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_413_a3/}
}
TY  - JOUR
AU  - N. Gordeev
AU  - E. W. Ellers
TI  - Commutators with some special elements in Chevalley groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 93
EP  - 105
VL  - 413
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_413_a3/
LA  - en
ID  - ZNSL_2013_413_a3
ER  - 
%0 Journal Article
%A N. Gordeev
%A E. W. Ellers
%T Commutators with some special elements in Chevalley groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 93-105
%V 413
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_413_a3/
%G en
%F ZNSL_2013_413_a3
N. Gordeev; E. W. Ellers. Commutators with some special elements in Chevalley groups. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 24, Tome 413 (2013), pp. 93-105. http://geodesic.mathdoc.fr/item/ZNSL_2013_413_a3/

[1] A. Borel, Linear Algebraic groups, Graduate texts in mathematics, 126, 2nd enl.ed.,, Springer-Verlag New York Inc., 1991 | DOI | MR | Zbl

[2] N. Bourbaki, Éléments de Mathématique. Groupes et Algèbres de Lie, Chap. IV, V, VI, 2ème édition, Masson, Paris, 1981 | MR

[3] R. W. Carter, Simple groups of Lie type, Pure and Applied Mathematics, 28, John Wiley Sons, London–New York–Sydney, 1972 | MR

[4] R. W. Carter, Finite Groups of Lie Type. Conjugacy Classes and Complex Characters, John Wiley Sons, Chichester et al., 1985 | MR | Zbl

[5] V. Chernousov, E. W. Ellers, N. Gordeev, “Gauss decomposition with prescribed semisimple part: short proof”, J. Algebra, 229:1 (2000), 314–332 | DOI | MR | Zbl

[6] E. W. Ellers, N. Gordeev, “On the conjectures of J. Thompson and O. Ore”, Trans. Amer. Math. Soc., 350:9 (1998), 3657–3671 | DOI | MR | Zbl

[7] E. W. Ellers, N. Gordeev, “Intersection of conjugacy classes with Bruhat cells in Chevalley groups”, Pacific J. Math., 214:2 (2004), 245–261 | DOI | MR | Zbl

[8] R. Gow, “Commutators in finite simple groups of Lie type”, Bull. Lond. Math. Soc., 32:3 (2000), 311–315 | DOI | MR | Zbl

[9] M. W. Liebeck, E. A. O'Brien, A. Shalev, P. H. Tiep, “Commutators in finite quasisimple groups”, Bull. Lond. Math. Soc., 43:6 (2011), 1079–1092 | DOI | MR | Zbl

[10] T. A. Springer, Linear Algebraic Groups, Progress in Mathematics, 9, 2nd edition, Birkhäuser Boston, Boston, MA, 1998 | MR | Zbl

[11] T. A. Springer, R. Steinberg, “Conjugacy classes”, Seminar on algebraic groups and related finite groups, Part E, Lect. Notes Math., 131, eds. A. Borel et al., Springer-Verlag, Berlin–Heidelberg–New York, 1970 | MR | Zbl

[12] R. Steinberg, “Regular elements of semisimple algebraic groups”, Inst. Hautes Études Sci. Publ. Math., 25 (1965), 49–80 | DOI | MR