Hochschild cohomology for algebras of semidihedral type. IV. The cohomology algebra for the family $SD(2\mathcal B)_2(k,t,c)$ in the case $c=0$
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 24, Tome 413 (2013), pp. 45-92 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper continues the previous author's paper in which the bimodule resolution was constructed for algebras of semidihedral type from the family $SD(2\mathcal B)_2$. In the present paper, using this resolution we describe a multiplicative structure of the Hochschild cohomology algebra for algebras in the mentioned family over a base field of characteristic 2 under an additional assumption that the parameter $c$ containing in the defining relations of the algebras is equal to zero.
@article{ZNSL_2013_413_a2,
     author = {A. I. Generalov},
     title = {Hochschild cohomology for algebras of semidihedral {type.~IV.} {The} cohomology algebra for the family $SD(2\mathcal B)_2(k,t,c)$ in the case $c=0$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {45--92},
     year = {2013},
     volume = {413},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_413_a2/}
}
TY  - JOUR
AU  - A. I. Generalov
TI  - Hochschild cohomology for algebras of semidihedral type. IV. The cohomology algebra for the family $SD(2\mathcal B)_2(k,t,c)$ in the case $c=0$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 45
EP  - 92
VL  - 413
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_413_a2/
LA  - ru
ID  - ZNSL_2013_413_a2
ER  - 
%0 Journal Article
%A A. I. Generalov
%T Hochschild cohomology for algebras of semidihedral type. IV. The cohomology algebra for the family $SD(2\mathcal B)_2(k,t,c)$ in the case $c=0$
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 45-92
%V 413
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_413_a2/
%G ru
%F ZNSL_2013_413_a2
A. I. Generalov. Hochschild cohomology for algebras of semidihedral type. IV. The cohomology algebra for the family $SD(2\mathcal B)_2(k,t,c)$ in the case $c=0$. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 24, Tome 413 (2013), pp. 45-92. http://geodesic.mathdoc.fr/item/ZNSL_2013_413_a2/

[1] A. I. Generalov, “Kogomologii Khokhshilda algebr poludiedralnogo tipa. III. Seriya $SD(2\mathcal B)_2$ v kharakteristike 2”, Zap. nauchn. semin. POMI, 400, 2012, 133–157 | MR

[2] K. Erdmann, Blocks of tame representation type and related algebras, Lect. Notes Math., 1428, Berlin–Heidelberg, 1990 | MR | Zbl

[3] Th. Holm, “Derived equivalent tame blocks”, J. Algebra, 194 (1997), 178–200 | DOI | MR | Zbl

[4] A. I. Generalov, “Kogomologii Khokhshilda algebr diedralnogo tipa, I: seriya $D(3\mathcal K)$ v kharakteristike 2”, Algebra i analiz, 16:6 (2004), 53–122 | MR | Zbl

[5] A. I. Generalov, “Kogomologii Khokhshilda algebr kvaternionnogo tipa. I: obobschennye gruppy kvaternionov”, Algebra i analiz, 18:1 (2006), 55–107 | MR | Zbl

[6] A. I. Generalov, A. A. Ivanov, S. O. Ivanov, “Kogomologii Khokhshilda algebr kvaternionnogo tipa. II. Seriya $Q(2\mathcal B)_1$ v kharakteristike 2”, Zap. nauchn. semin. POMI, 349, 2007, 53–134

[7] A. I. Generalov, “Kogomologii Khokhshilda algebr kvaternionnogo tipa. III. Algebry s malym parametrom”, Zap. nauchn. semin. POMI, 356, 2008, 46–84 | MR | Zbl

[8] A. A. Ivanov, “Kogomologii Khokhshilda algebr kvaternionnogo tipa: seriya $Q(2\mathcal B)_1(k,s,a,c)$ nad polem kharakteristiki ne 2”, Vestnik S.-Peterburgskogo un-ta. Ser. 1. Mat., mekh., astron., 2010, no. 1, 63–72 | Zbl

[9] A. I. Generalov, “Kogomologii Khokhshilda algebr diedralnogo tipa. II. Lokalnye algebry”, Zap. nauchn. semin. POMI, 375, 2010, 92–129 | MR | Zbl

[10] A. I. Generalov, “Kogomologii Khokhshilda algebr diedralnogo tipa. III. Lokalnye algebry v kharakteristike 2”, Vestnik S.-Peterburgskogo un-ta. Ser. 1. Mat., mekh., astron., 2010, no. 1, 28–38 | MR | Zbl

[11] A. I. Generalov, “Kogomologii Khokhshilda algebr poludiedralnogo tipa. I. Gruppovye algebry poludiedralnykh grupp”, Algebra i analiz, 21:2 (2009), 1–51 | MR | Zbl

[12] A. I. Generalov, “Kogomologii Khokhshilda algebr poludiedralnogo tipa, II. Lokalnye algebry”, Zap. nauchn. semin. POMI, 386, 2011, 144–202 | MR

[13] A. I. Generalov, M. A. Kachalova, “Bimodulnaya rezolventa algebry Mëbiusa”, Zap. nauchn. semin. POMI, 321, 2005, 36–66 | MR | Zbl

[14] M. A. Kachalova, “Kogomologii Khokhshilda algebry Mëbiusa”, Zap. nauchn. semin. POMI, 330, 2006, 173–200 | MR | Zbl

[15] M. A. Pustovykh, “Koltso kogomologii Khokhshilda algebry Mëbiusa”, Zap. nauchn. semin. POMI, 388, 2011, 210–246 | MR

[16] Yu. V. Volkov, A. I. Generalov, “Kogomologii Khokhshilda samoin'ektivnykh algebr drevesnogo tipa $D_n$. I”, Zap. nauchn. semin. POMI, 343, 2007, 121–182 | MR

[17] Yu. V. Volkov, “Kogomologii Khokhshilda samoin'ektivnykh algebr drevesnogo tipa $D_n$. II”, Zap. nauchn. semin. POMI, 365, 2009, 63–121 | MR | Zbl

[18] Yu. V. Volkov, A. I. Generalov, “Kogomologii Khokhshilda samoin'ektivnykh algebr drevesnogo tipa $D_n$. III”, Zap. nauchn. semin. POMI, 386, 2011, 100–128 | MR

[19] Yu. V. Volkov, “Kogomologii Khokhshilda nestandartnykh samoin'ektivnykh algebr drevesnogo tipa $D_n$”, Zap. nauchn. semin. POMI, 388, 2011, 48–99 | MR

[20] Yu. V. Volkov, “Algebra kogomologii Khokhshilda dlya odnoi serii samoin'ektivnykh algebr drevesnogo tipa $D_n$”, Algebra i analiz, 23:5 (2011), 99–139 | MR

[21] Yu. V. Volkov, “Kogomologii Khokhshilda samoin'ektivnykh algebr drevesnogo tipa $D_n$. IV”, Zap. nauchn. semin. POMI, 388, 2011, 100–118 | MR

[22] Yu. V. Volkov, “Kogomologii Khokhshilda samoin'ektivnykh algebr drevesnogo tipa $D_n$. V”, Zap. nauchn. semin. POMI, 394, 2011, 140–173 | MR

[23] A. I. Generalov, N. Yu. Kosovskaya, “Kogomologii Khokhshilda algebr Lyu–Shultsa”, Algebra i analiz, 18:4 (2006), 39–82 | MR | Zbl

[24] A. I. Generalov, “Kogomologii Khokhshilda tselochislennogo gruppovogo koltsa diedralnoi gruppy. I. Chëtnyi sluchai”, Algebra i analiz, 19:5 (2007), 70–123 | MR | Zbl

[25] A. I. Generalov, “Kogomologii Khokhshilda tselochislennogo gruppovogo koltsa poludiedralnoi gruppy”, Zap. nauchn. semin. POMI, 388, 2011, 119–151 | MR

[26] Th. Holm, “Derived equivalence classification of algebras of dihedral, semidihedral, and quaternion type”, J. Algebra, 221 (1999), 159–205 | DOI | MR