The Hilbert symbol in multidimensional local fields for Lubin–Tate formal groups. 2
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 24, Tome 413 (2013), pp. 26-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper an explicit formula for the Hilbert pairing between the Milnor $K$-group of multidimensional local field and the multidimensional Lubin–Tate formal module is derived. This formula is a generalization of such formula in one-dimensional case. Here we consider the case of characteristic $p>0$ of penultimate residue field.
@article{ZNSL_2013_413_a1,
     author = {S. S. Afanas'eva},
     title = {The {Hilbert} symbol in multidimensional local fields for {Lubin{\textendash}Tate} formal groups.~2},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {26--44},
     year = {2013},
     volume = {413},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_413_a1/}
}
TY  - JOUR
AU  - S. S. Afanas'eva
TI  - The Hilbert symbol in multidimensional local fields for Lubin–Tate formal groups. 2
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 26
EP  - 44
VL  - 413
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_413_a1/
LA  - ru
ID  - ZNSL_2013_413_a1
ER  - 
%0 Journal Article
%A S. S. Afanas'eva
%T The Hilbert symbol in multidimensional local fields for Lubin–Tate formal groups. 2
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 26-44
%V 413
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_413_a1/
%G ru
%F ZNSL_2013_413_a1
S. S. Afanas'eva. The Hilbert symbol in multidimensional local fields for Lubin–Tate formal groups. 2. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 24, Tome 413 (2013), pp. 26-44. http://geodesic.mathdoc.fr/item/ZNSL_2013_413_a1/

[1] S. S. Afanaseva, B. M. Bekker, S. V. Vostokov, “Simvol Gilberta v mnogomernykh lokalnykh polyakh dlya formalnoi gruppy Lyubina–Teita”, Zap. nauchn. sem. POMI, 400, 2012, 20–49 | MR

[2] S. V. Vostokov, “Yavnaya forma zakona vzaimnosti”, Izv. AN SSSR. Ser. matem., 42:6 (1978), 1288–1321 | MR | Zbl

[3] S. V. Vostokov, “Normennoe sparivanie v formalnykh modulyakh”, Izv. AN SSSR. Ser. matem., 43:4 (1979), 765–794 | MR | Zbl

[4] S. V. Vostokov, O. V. Demchenko, “Yavnaya formula sparivaniya Gilberta dlya formalnykh grupp Khondy”, Zap. nauchn. sem. POMI, 272, 2000, 86–128 | MR | Zbl

[5] A. I. Madunts, “Formalnye gruppy Lyubina–Teita nad koltsom tselykh mnogomernogo lokalnogo polya”, Zap. nauchn. sem. POMI, 281, 2001, 221–226 | MR | Zbl

[6] F. Lorenz, S. Vostokov, “Honda Groups and Explicit Pairings on the Modules of Cartier Curves”, Contemporary Mathematics, 300 (2002), 143–170 | DOI | MR | Zbl

[7] S. V. Vostokov, F. Lorents, “Yavnaya formula simvola Gilberta dlya grupp Khondy v mnogomernom lokalnom pole”, Matem. sb., 194:2 (2003), 3–36 | DOI | MR | Zbl

[8] M. V. Bondarko, S. V. Vostokov, F. Lorents, “Sparivanie Gilberta dlya formalnykh grupp nad $\sigma$-koltsami”, Zap. nauchn. sem. POMI, 319, 2004, 5–58 | MR | Zbl

[9] D. G. Benua, S. V. Vostokov, “Arifmetika gruppy tochek formalnoi gruppy”, Zap. nauchn. sem. LOMI, 191, 1991, 9–23 | MR | Zbl