Two-term partial tilting complexes over Brauer tree algebras
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 24, Tome 413 (2013), pp. 5-25 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper, we describe all indecomposable two-term partial tilting complexes over a Brauer tree algebra with multiplicity 1 using a criterion for a minimal projective presentation of a module to be a partial tilting complex. As an application we describe all two-term tilting complexes over Brauer star algebra and compute their endomorphism rings.
@article{ZNSL_2013_413_a0,
     author = {M. A. Antipov and A. O. Zvonareva},
     title = {Two-term partial tilting complexes over {Brauer} tree algebras},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--25},
     year = {2013},
     volume = {413},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_413_a0/}
}
TY  - JOUR
AU  - M. A. Antipov
AU  - A. O. Zvonareva
TI  - Two-term partial tilting complexes over Brauer tree algebras
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 5
EP  - 25
VL  - 413
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_413_a0/
LA  - ru
ID  - ZNSL_2013_413_a0
ER  - 
%0 Journal Article
%A M. A. Antipov
%A A. O. Zvonareva
%T Two-term partial tilting complexes over Brauer tree algebras
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 5-25
%V 413
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_413_a0/
%G ru
%F ZNSL_2013_413_a0
M. A. Antipov; A. O. Zvonareva. Two-term partial tilting complexes over Brauer tree algebras. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 24, Tome 413 (2013), pp. 5-25. http://geodesic.mathdoc.fr/item/ZNSL_2013_413_a0/

[1] R. Rouquier, A. Zimmermann, “Picard groups for derived module categories”, Proc. London Math. Soc. (3), 87:1 (2003), 197–225 | DOI | MR | Zbl

[2] I. Muchtadi-Alamsyah, “Braid action on derived category of Nakayama algebras”, Comm. Algebra, 36:7 (2008), 2544–2569 | DOI | MR | Zbl

[3] H. Abe, M. Hoshino, “On derived equivalences for selfinjective algebras”, Comm. Algebra, 34:12 (2006), 4441–4452 | DOI | MR | Zbl

[4] M. Schaps, E. Zakay-Illouz, “Combinatorial partial tilting complexes for the Brauer star algebras”, Proc. Int. Conference on Representations of Algebra, Sao Paulo, 2001, 187–208 | MR

[5] M. Schaps, E. Zakay-Illouz, “Pointed Brauer trees”, J. Algebra, 246:2 (2001), 647–672 | DOI | MR | Zbl

[6] J. Rickard, “Morita theory for derived categories”, J. London Math. Soc., 39:2 (1989), 436–456 | DOI | MR | Zbl

[7] I. M. Gelfand, V. A. Ponomarev, “Nerazlozhimye predstavleniya gruppy Lorentsa”, UMN, 23:2(140) (1968), 3–60 | MR | Zbl

[8] B. Wald, J. Waschbüsch, “Tame biserial algebras”, J. Algebra, 95 (1985), 480–500 | DOI | MR | Zbl

[9] M. A. Antipov, A. I. Generalov, “Konechnaya porozhdennost algebr Ionedy simmetricheskikh spetsialnykh biryadnykh algebr”, Algebra i analiz, 17:3 (2005), 1–23 | MR | Zbl

[10] J. L. Alperin, Local representation theory, Cambridge Stud. Adv. Math., 11, Cambridge Univ. Press, 1986 | MR | Zbl

[11] J. Rickard, “Derived categories and stable equivalence”, J. Pure Appl. Algebra, 61 (1989), 303–317 | DOI | MR | Zbl

[12] P. Gabriel, C. Riedtmann, “Group representations without groups”, Comment. Math. Helv., 54 (1979), 240–287 | DOI | MR | Zbl

[13] M. C. R. Butler, C. M. Ringel, “Auslander-Reiten sequences with few middle terms and applications to string algebras”, Comm. Algebra, 15:1–2 (1987), 145–179 | DOI | MR | Zbl

[14] D. Happel, “Auslander-Reiten triangles in derived categories of finite-dimensional algebras”, Proc. Amer. Math. Soc., 112 (1991), 641–648 | DOI | MR | Zbl

[15] D. Happel, Triangulated Categories in the Representation Theory of Finite Dimensional Algebras, Cambridge University Press, 1988 | MR | Zbl