A generalization of Chentsov's projection estimates
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 19, Tome 412 (2013), pp. 181-206

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1962, N. N. Chentsov suggested the following method of estimation a functional parameter $\theta$ belonging to a Hilbert space $H$. He suggested to project $\theta$ on finite-dimensional subspaces of $H$ and consider as estimates of $\theta$ estimates of these projections. In this paper, we suggest to consider the projections on all reproducing kernel subspaces of $H$.
@article{ZNSL_2013_412_a8,
     author = {I. A. Ibragimov},
     title = {A generalization of {Chentsov's} projection estimates},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {181--206},
     publisher = {mathdoc},
     volume = {412},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_412_a8/}
}
TY  - JOUR
AU  - I. A. Ibragimov
TI  - A generalization of Chentsov's projection estimates
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 181
EP  - 206
VL  - 412
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_412_a8/
LA  - ru
ID  - ZNSL_2013_412_a8
ER  - 
%0 Journal Article
%A I. A. Ibragimov
%T A generalization of Chentsov's projection estimates
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 181-206
%V 412
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_412_a8/
%G ru
%F ZNSL_2013_412_a8
I. A. Ibragimov. A generalization of Chentsov's projection estimates. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 19, Tome 412 (2013), pp. 181-206. http://geodesic.mathdoc.fr/item/ZNSL_2013_412_a8/