Large Deviation Principle for moderate deviation probabilities of empirical bootstrap measure
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 19, Tome 412 (2013), pp. 138-180 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We prove two LDPs (LDP) in the zone of moderate deviation probabilities. First we establish LDP for the conditional distributions of moderate deviations of empirical bootstrap measure given empirical probability measure. Second we establish LDP for the joint distribution of empirical measure and empirical bootstrap measure. Using these LDPs, on the base of contraction principle, we deduce similar LDPs for statistical functionals having the Hadamard derivatives. The LDPs for moderate deviations of empirical quantile processes and empirical bootstrap copula function are given as illustration of these results.
@article{ZNSL_2013_412_a7,
     author = {M. S. Ermakov},
     title = {Large {Deviation} {Principle} for moderate deviation probabilities of empirical bootstrap measure},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {138--180},
     year = {2013},
     volume = {412},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_412_a7/}
}
TY  - JOUR
AU  - M. S. Ermakov
TI  - Large Deviation Principle for moderate deviation probabilities of empirical bootstrap measure
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 138
EP  - 180
VL  - 412
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_412_a7/
LA  - ru
ID  - ZNSL_2013_412_a7
ER  - 
%0 Journal Article
%A M. S. Ermakov
%T Large Deviation Principle for moderate deviation probabilities of empirical bootstrap measure
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 138-180
%V 412
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_412_a7/
%G ru
%F ZNSL_2013_412_a7
M. S. Ermakov. Large Deviation Principle for moderate deviation probabilities of empirical bootstrap measure. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 19, Tome 412 (2013), pp. 138-180. http://geodesic.mathdoc.fr/item/ZNSL_2013_412_a7/

[1] A. K. Aleskevičiene, “Large and moderate deviations for $L$-statistics”, Lithuanian Math. J., 31 (1991), 145–156 | DOI | MR | Zbl

[2] M. A. Arcones, “Moderate deviations of empirical processes”, Stochastic Inequalities and Applications, eds. E. Giné, C. Houdré, D. Nualart, Birkhäuser Boston, 2003, 189–212 | DOI | MR | Zbl

[3] M. A. Arcones, “Large deviations for $M$-estimators”, Ann. Inst. Math. Statist., 58 (2006), 21–52 | DOI | MR | Zbl

[4] A. A. Borovkov, A. A. Mogulskii, “O veroyatnostyakh bolshikh uklonenii v topologicheskikh prostranstvakh. II”, Sib. matem. zhurnal, 21:5 (1980), 12–26 | MR | Zbl

[5] E. Bolthausen, “On the probability of large deviations in Banach spaces”, Ann. Probab., 12 (1984), 427–435 | DOI | MR | Zbl

[6] N. R. Chaganty, R. L. Karandikar, “Some properties of the Kullback–Leibler number”, Sankhyā A, 58 (1996), 69–80 | MR | Zbl

[7] N. R. Chaganty, “Large deviations for joint distributions and statistical applications”, Sankhyā A, 59 (1997), 147–166 | MR | Zbl

[8] A. de Acosta, “On large deviations of empirical measures in the $\tau$-topology”, J. Appl. Probab., 31A (1994), 41–47 | DOI | MR | Zbl

[9] R. Dasgupta, “Bootstrap of deviation probabilities with applications”, J. Multivariate Anal., 101:9 (2010), 2137–2148 | DOI | MR | Zbl

[10] A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications, Jones and Bartlett, Boston, 1993 | MR | Zbl

[11] M. D. Donsker, S. R. S. Varadhan, “Asymptotic evaluation of certain Markov process expectations for large time. III”, Comm. Pure Appl. Math., 29 (1976), 389–461 | DOI | MR | Zbl

[12] B. Efron, “Bootstrap methods: another look at the jackknife”, Ann. Stat., 7 (1979), 1–26 | DOI | MR | Zbl

[13] P. Eichelsbacher, U. Schmock, “Large deviations of $U$-empirical measures in strong topologies and applications”, Ann. Inst. Henri Poincaré. Probab. Statist., 38 (2002), 779–797 | MR | Zbl

[14] P. Eichelsbacher, M. Löwe, “Moderate deviations for i.i.d. random variables”, ESAIM: Probab. Statist., 7 (2003), 207–216 | DOI | MR

[15] M. S. Ermakov, “Importance sampling for simulation of moderate deviation probabilities of statistics”, Statist. Decision, 25 (2007), 265–284 | MR | Zbl

[16] F. Gao, X. Zhao, “Delta method in large deviations and moderate deviations for estimators”, Ann. Statist., 39 (2011), 1211–1240 | DOI | MR | Zbl

[17] P. Groeneboom, J. Oosterhoff, F. H. Ruymgaart, “Large deviation theorems for empirical probability measures”, Ann. Probab., 7 (1979), 553–586 | DOI | MR | Zbl

[18] P. Hall, “On the relative performance of bootstrap and Edgeworth approximations of a distribution function”, J. Multivariate Anal., 35 (1990), 108–129 | DOI | MR | Zbl

[19] T. Inglot, W. C. M. Kallenberg, T. Ledwina, “Strong moderate deviation theorems”, Ann. Probab., 20 (1992), 987–1003 | DOI | MR | Zbl

[20] J. Jureckova, W. C. M. Kallenberg, N. Veraverbeke, “Moderate and Cramer type large deviation theorems for $M$-estimators”, Statist. Probab. Lett., 6 (1988), 191–199 | DOI | MR | Zbl

[21] C. Leonard, J. Najim, “An extension of Sanov's theorem. Application to the Gibbs conditioning principle”, Bernoulli, 8 (2002), 721–743 | MR | Zbl

[22] D. Li, A. Rosalski, D. K. Al-Mutairi, “A large deviation principle for bootstrapped sample means”, Proc. Amer. Math. Soc., 130 (2001), 2133–2138

[23] V. V. Petrov, Sums of Independent Random Variables, Springer, New York, 1975 | MR | Zbl

[24] I. N. Sanov, “O veroyatnostyakh bolshikh uklonenii sluchainykh velichin”, Matem. sb., 42(84):1 (1957), 11–44 | MR | Zbl

[25] R. J. Serfling, Approximation Theorems of Mathematical Statistics, Wiley, New York, 1980 | MR | Zbl

[26] L. Saulis, V. Statulyavichus, Predelnye teoremy dlya bolshikh uklonenii, Mokslas, Vilnyus, 1989 | MR | Zbl

[27] A. W. van der Vaart, J. A. Wellner, Weak Convergence and Empirical Processes with Applications to Statistics, Springer, New York, 1996 | MR

[28] A. Wood, “Bootstrap relative errors and subexponential destributions”, Bernoulli, 6 (2000), 809–834 | DOI | MR | Zbl