@article{ZNSL_2013_412_a7,
author = {M. S. Ermakov},
title = {Large {Deviation} {Principle} for moderate deviation probabilities of empirical bootstrap measure},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {138--180},
year = {2013},
volume = {412},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_412_a7/}
}
M. S. Ermakov. Large Deviation Principle for moderate deviation probabilities of empirical bootstrap measure. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 19, Tome 412 (2013), pp. 138-180. http://geodesic.mathdoc.fr/item/ZNSL_2013_412_a7/
[1] A. K. Aleskevičiene, “Large and moderate deviations for $L$-statistics”, Lithuanian Math. J., 31 (1991), 145–156 | DOI | MR | Zbl
[2] M. A. Arcones, “Moderate deviations of empirical processes”, Stochastic Inequalities and Applications, eds. E. Giné, C. Houdré, D. Nualart, Birkhäuser Boston, 2003, 189–212 | DOI | MR | Zbl
[3] M. A. Arcones, “Large deviations for $M$-estimators”, Ann. Inst. Math. Statist., 58 (2006), 21–52 | DOI | MR | Zbl
[4] A. A. Borovkov, A. A. Mogulskii, “O veroyatnostyakh bolshikh uklonenii v topologicheskikh prostranstvakh. II”, Sib. matem. zhurnal, 21:5 (1980), 12–26 | MR | Zbl
[5] E. Bolthausen, “On the probability of large deviations in Banach spaces”, Ann. Probab., 12 (1984), 427–435 | DOI | MR | Zbl
[6] N. R. Chaganty, R. L. Karandikar, “Some properties of the Kullback–Leibler number”, Sankhyā A, 58 (1996), 69–80 | MR | Zbl
[7] N. R. Chaganty, “Large deviations for joint distributions and statistical applications”, Sankhyā A, 59 (1997), 147–166 | MR | Zbl
[8] A. de Acosta, “On large deviations of empirical measures in the $\tau$-topology”, J. Appl. Probab., 31A (1994), 41–47 | DOI | MR | Zbl
[9] R. Dasgupta, “Bootstrap of deviation probabilities with applications”, J. Multivariate Anal., 101:9 (2010), 2137–2148 | DOI | MR | Zbl
[10] A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications, Jones and Bartlett, Boston, 1993 | MR | Zbl
[11] M. D. Donsker, S. R. S. Varadhan, “Asymptotic evaluation of certain Markov process expectations for large time. III”, Comm. Pure Appl. Math., 29 (1976), 389–461 | DOI | MR | Zbl
[12] B. Efron, “Bootstrap methods: another look at the jackknife”, Ann. Stat., 7 (1979), 1–26 | DOI | MR | Zbl
[13] P. Eichelsbacher, U. Schmock, “Large deviations of $U$-empirical measures in strong topologies and applications”, Ann. Inst. Henri Poincaré. Probab. Statist., 38 (2002), 779–797 | MR | Zbl
[14] P. Eichelsbacher, M. Löwe, “Moderate deviations for i.i.d. random variables”, ESAIM: Probab. Statist., 7 (2003), 207–216 | DOI | MR
[15] M. S. Ermakov, “Importance sampling for simulation of moderate deviation probabilities of statistics”, Statist. Decision, 25 (2007), 265–284 | MR | Zbl
[16] F. Gao, X. Zhao, “Delta method in large deviations and moderate deviations for estimators”, Ann. Statist., 39 (2011), 1211–1240 | DOI | MR | Zbl
[17] P. Groeneboom, J. Oosterhoff, F. H. Ruymgaart, “Large deviation theorems for empirical probability measures”, Ann. Probab., 7 (1979), 553–586 | DOI | MR | Zbl
[18] P. Hall, “On the relative performance of bootstrap and Edgeworth approximations of a distribution function”, J. Multivariate Anal., 35 (1990), 108–129 | DOI | MR | Zbl
[19] T. Inglot, W. C. M. Kallenberg, T. Ledwina, “Strong moderate deviation theorems”, Ann. Probab., 20 (1992), 987–1003 | DOI | MR | Zbl
[20] J. Jureckova, W. C. M. Kallenberg, N. Veraverbeke, “Moderate and Cramer type large deviation theorems for $M$-estimators”, Statist. Probab. Lett., 6 (1988), 191–199 | DOI | MR | Zbl
[21] C. Leonard, J. Najim, “An extension of Sanov's theorem. Application to the Gibbs conditioning principle”, Bernoulli, 8 (2002), 721–743 | MR | Zbl
[22] D. Li, A. Rosalski, D. K. Al-Mutairi, “A large deviation principle for bootstrapped sample means”, Proc. Amer. Math. Soc., 130 (2001), 2133–2138
[23] V. V. Petrov, Sums of Independent Random Variables, Springer, New York, 1975 | MR | Zbl
[24] I. N. Sanov, “O veroyatnostyakh bolshikh uklonenii sluchainykh velichin”, Matem. sb., 42(84):1 (1957), 11–44 | MR | Zbl
[25] R. J. Serfling, Approximation Theorems of Mathematical Statistics, Wiley, New York, 1980 | MR | Zbl
[26] L. Saulis, V. Statulyavichus, Predelnye teoremy dlya bolshikh uklonenii, Mokslas, Vilnyus, 1989 | MR | Zbl
[27] A. W. van der Vaart, J. A. Wellner, Weak Convergence and Empirical Processes with Applications to Statistics, Springer, New York, 1996 | MR
[28] A. Wood, “Bootstrap relative errors and subexponential destributions”, Bernoulli, 6 (2000), 809–834 | DOI | MR | Zbl