Multivariate estimates for the concentration functions of weighted sums of independent identically distributed random variables
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 19, Tome 412 (2013), pp. 121-137 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This article is a multidimensional generalization of the results Eliseeva and Zaitsev (2012). Let $X,X_1,\ldots,X_n$ be independent identically distributed random variables. The paper deals with the question about the behavior of the concentration function of the random variable $\sum_{k=1}^na_kX_k$ according to the arithmetic structure of vectors $a_k$. Recently the interest to this question has increased significantly due to the study of distributions of eigenvalues of random matrices. In this paper we formulate and prove some refinements of the results Friedland and Sodin (2007) and Rudelson and Vershynin (2009).
@article{ZNSL_2013_412_a6,
     author = {Yu. S. Eliseeva},
     title = {Multivariate estimates for the concentration functions of weighted sums of independent identically distributed random variables},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {121--137},
     year = {2013},
     volume = {412},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_412_a6/}
}
TY  - JOUR
AU  - Yu. S. Eliseeva
TI  - Multivariate estimates for the concentration functions of weighted sums of independent identically distributed random variables
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 121
EP  - 137
VL  - 412
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_412_a6/
LA  - ru
ID  - ZNSL_2013_412_a6
ER  - 
%0 Journal Article
%A Yu. S. Eliseeva
%T Multivariate estimates for the concentration functions of weighted sums of independent identically distributed random variables
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 121-137
%V 412
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_412_a6/
%G ru
%F ZNSL_2013_412_a6
Yu. S. Eliseeva. Multivariate estimates for the concentration functions of weighted sums of independent identically distributed random variables. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 19, Tome 412 (2013), pp. 121-137. http://geodesic.mathdoc.fr/item/ZNSL_2013_412_a6/

[1] H. Nguyen, V. Vu, “Optimal inverse Littlewood–Offord theorems”, Adv. Math., 226 (2011), 5298–5319 | DOI | MR | Zbl

[2] M. Rudelson, R. Vershynin, “The Littlewood–Offord problem and invertibility of random matrices”, Adv. Math., 218 (2008), 600–633 | DOI | MR | Zbl

[3] M. Rudelson, R. Vershynin, “Smallest singular value of a random rectangular matrix”, Comm. Pure Appl. Math., 62 (2009), 1707–1739 | DOI | MR | Zbl

[4] T. Tao, V. Vu, “Inverse Littlewood–Offord theorems and the condition number of random discrete matrices”, Ann. Math., 169 (2009), 595–632 | DOI | MR | Zbl

[5] T. Tao, V. Vu, “From the Littlewood–Offord problem to the circular law: universality of the spectral distribution of random matrices”, Bull. Amer. Math. Soc., 46 (2009), 377–396 | DOI | MR | Zbl

[6] Yu. S. Eliseeva, A. Yu. Zaitsev, “Otsenki funktsii kontsentratsii vzveshennykh summ nezavisimykh odinakovo raspredelennykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 57:4 (2012), 768–777 | DOI

[7] G. Halász, “Estimates for the concentration function of combinatorial number theory and probability”, Periodica Mathematica Hungarica, 8 (1977), 197–211 | DOI | MR | Zbl

[8] J. E. Littlewood, A. C. Offord, “On the number of real roots of a random algebraic equation. III”, Rec. Math. [Mat. Sbornik] N.S., 12(54):3 (1943), 277–286 | MR | Zbl

[9] P. Erdös, “On a lemma of Littlewood and Offord”, Bull. Amer. Math. Soc., 51 (1945), 898–902 | DOI | MR | Zbl

[10] P. Frankl, Z. Füredi, “Solution of the Littlewood–Offord problem in high dimensions”, Ann. Math., 128 (1988), 259–270 | DOI | MR | Zbl

[11] P. Erdös, “Extremal problems in number theory”, 1965 Proc. Sympos. Pure Math., v. VIII, Amer. Math. Soc., Providence, R.I., 1965, 181–189 | DOI | MR

[12] A. Sárközy, E. Szemerédi, “Über ein Problem von Erdös und Moser”, Acta Arithmetica, 11 (1965), 205–208 | MR | Zbl

[13] T. V. Arak, A. Yu. Zaitsev, Ravnomernye predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Tr. MIAN SSSR, 174, 1986 | MR | Zbl

[14] V. Khengartner, R. Teodoresku, Funktsii kontsentratsii, Per. s angl. V. M. Kruglova, V. M. Zolotareva, Nauka, M., 1980 | MR

[15] V. V. Petrov, Summy nezavisimykh sluchainykh velichin, Nauka, M., 1972 | MR

[16] C.-G. Esséen, “On the Kolmogorov–Rogozin inequality for the concentration function”, Z. Wahrscheinlichkeitstheor. verw. Geb., 5 (1966), 210–216 | DOI | MR | Zbl

[17] T. Tao, V. Vu, Additive Combinatorics, Cambridge Studies in Advanced Mathematics, 105, Cambridge University Press, Cambridge, 2006 | MR | Zbl

[18] G. Zigel, “Verkhnie otsenki dlya funktsii kontsentratsii v gilbertovom prostranstve”, Teoriya veroyatn. i ee primen., 26:2 (1981), 335–349 | MR | Zbl

[19] A. L. Miroshnikov, “Otsenki mnogomernoi funktsii kontsentratsii Levi”, Teoriya veroyatn. i ee primen., 34:3 (1989), 593–598 | MR | Zbl

[20] S. M. Ananevskii, A. L. Miroshnikov, “Lokalnye otsenki funktsii kontsentratsii Levi v mnogomernom i gilbertovom prostranstve”, Zap. nauchn. semin. LOMI, 130, 1983, 6–10 | MR | Zbl

[21] A. Yu. Zaitsev, “K mnogomernomu obobscheniyu metoda treugolnykh funktsii”, Zap. nauchn. semin. LOMI, 158, 1987, 81–104 | MR | Zbl

[22] O. Friedland, S. Sodin, “Bounds on the concentration function in terms of Diophantine approximation”, C. R. Math. Acad. Sci. Paris, 345 (2007), 513–518 | DOI | MR | Zbl

[23] B. A. Rogozin, “Ob uvelichenii rasseivaniya summ nezavisimykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 6:1 (1961), 106–108 | MR

[24] T. V. Arak, “O skorosti skhodimosti v ravnomernoi predelnoi teoreme Kolmogorova. I”, Teoriya veroyatn. i ee primen., 26:2 (1981), 225–245 | MR | Zbl

[25] J. Bretagnolle, “Sur l'inégalité de concentration de Doeblin–Lévy, Rogozin–Kesten”, Parametric and semiparametric models with applications to reliability, survival analysis, and quality of life, Stat. Ind. Technol., Birkhäuser, Boston, 2004, 533–551 | MR

[26] H. Kesten, “A sharper form of the Doeblin–Lévy–Kolmogorov–Rogozin inequality for concentration functions”, Math. Scand., 25 (1969), 133–144 | MR | Zbl

[27] A. L. Miroshnikov, B. A. Rogozin, “Neravenstva dlya funktsii kontsentratsii”, Teoriya veroyatn. i ee primen., 25:1 (1980), 178–183 | MR | Zbl

[28] S. V. Nagaev, S. S. Khodzhabagyan, “Ob otsenke funktsii kontsentratsii summ nezavisimykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 41:3 (1996), 655–665 | DOI | MR | Zbl

[29] C.-G. Esséen, “On the concentration function of a sum of independent random variables”, Z. Wahrscheinlichkeitstheor. verw. Geb., 9 (1968), 290–308 | DOI | MR | Zbl