Functional central limit theorem for excursion set volumes of quasi-associated random fields
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 19, Tome 412 (2013), pp. 109-120 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Stationary quasi-associated random fields with continuous covariance function are considered. Recently Bulinski, Spodarev, and Timmermann proved a central limit theorem for the excursion set volumes of such random fields. We establish a functional version of this theorem.
@article{ZNSL_2013_412_a5,
     author = {V. P. Demichev},
     title = {Functional central limit theorem for excursion set volumes of quasi-associated random fields},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {109--120},
     year = {2013},
     volume = {412},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_412_a5/}
}
TY  - JOUR
AU  - V. P. Demichev
TI  - Functional central limit theorem for excursion set volumes of quasi-associated random fields
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 109
EP  - 120
VL  - 412
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_412_a5/
LA  - ru
ID  - ZNSL_2013_412_a5
ER  - 
%0 Journal Article
%A V. P. Demichev
%T Functional central limit theorem for excursion set volumes of quasi-associated random fields
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 109-120
%V 412
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_412_a5/
%G ru
%F ZNSL_2013_412_a5
V. P. Demichev. Functional central limit theorem for excursion set volumes of quasi-associated random fields. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 19, Tome 412 (2013), pp. 109-120. http://geodesic.mathdoc.fr/item/ZNSL_2013_412_a5/

[1] R. J. Adler, J. E. Taylor, Random Fields and Geometry, Springer, New York, 2007 | MR

[2] J.-M. Azais, M. Wschebor, Level Sets and Extrema of Random Processes and Fields, Wiley, New Jersey, 2009 | MR | Zbl

[3] N. N. Leonenko, A. V. Ivanov, Statisticheskii analiz sluchainykh polei, Vischa shkola. Izd-vo pri Kiev. un-te, Kiev, 1986 | MR | Zbl

[4] A. V. Bulinski, E. Spodarev, F. Timmermann, “Central limit theorems for the excursion set volumes of weakly dependent random fields”, Bernoulli, 18:1 (2012), 100–118 | DOI | MR | Zbl

[5] D. Meschenmoser, A. Shashkin, “Functional central limit theorem for the volume of excursion sets generated by associated random fields”, Statist. Probab. Lett., 81:6 (2011), 642–646 | DOI | MR | Zbl

[6] A. V. Bulinski, C. Suquet, “Normal approximation for quasi-associated random fields”, Statist. Probab. Lett., 54 (2001), 215–226 | DOI | MR | Zbl

[7] A. V. Bulinskii, E. Shabanovich, “Asimptoticheskoe povedenie nekotorykh funktsionalov ot polozhitelno i otritsatelno zavisimykh sluchainykh polei”, Fundament. i prikl. matem., 4:2 (1998), 479–492 | MR | Zbl

[8] A. P. Shashkin, “Kvaziassotsiirovannost gaussovskoi sistemy sluchainykh vektorov”, UMN, 57:6 (2002), 199–200 | DOI | MR | Zbl

[9] Q-M. Shao, H. Yu, “Weak convergence for weighted empirical processes of dependent sequences”, Ann. Probab., 24:4 (1996), 2098–2127 | DOI | MR | Zbl

[10] A. V. Bulinskii, A. P. Shashkin, Predelnye teoremy dlya assotsiirovannykh sluchainykh polei i rodstvennykh sistem, FIZMATLIT, M., 2008

[11] F. Moricz, “A general moment inequality for the maximum of the rectangular partial sums of multiple series”, Acta Math. Hung., 41:3–4 (1983), 337–346 | DOI | MR | Zbl