Markov property of the occupation time for countable Markov chains
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 19, Tome 412 (2013), pp. 88-108 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper deals with the Markov property for the occupation time process for homogeneous Markov chain with continuous time and countable state space. The well-known result that the Markov property is valid for random walk on a tree is generalized on the case of random walk on arbitrary graph.
@article{ZNSL_2013_412_a4,
     author = {A. A. Vorotov},
     title = {Markov property of the occupation time for countable {Markov} chains},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {88--108},
     year = {2013},
     volume = {412},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_412_a4/}
}
TY  - JOUR
AU  - A. A. Vorotov
TI  - Markov property of the occupation time for countable Markov chains
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 88
EP  - 108
VL  - 412
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_412_a4/
LA  - ru
ID  - ZNSL_2013_412_a4
ER  - 
%0 Journal Article
%A A. A. Vorotov
%T Markov property of the occupation time for countable Markov chains
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 88-108
%V 412
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_412_a4/
%G ru
%F ZNSL_2013_412_a4
A. A. Vorotov. Markov property of the occupation time for countable Markov chains. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 19, Tome 412 (2013), pp. 88-108. http://geodesic.mathdoc.fr/item/ZNSL_2013_412_a4/

[1] S. S. Vallander, “Vremena prebyvaniya dlya schetnykh tsepei Markova. I. Tsepi s diskretnym vremenem”, Zap. nauchn. semin. LOMI, 119, 1982, 39–61 | MR | Zbl

[2] S. S. Vallander, “Vremena prebyvaniya dlya schetnykh tsepei Markova. II. Tsepi s nepreryvnym vremenem”, Zap. nauchn. semin. LOMI, 130, 1983, 56–64 | MR | Zbl

[3] S. S. Vallander, “Vremena prebyvaniya dlya schetnykh tsepei Markova. III. Tsepi na dereve s odnoi tochkoi vetvleniya”, Zap. nauchn. semin. LOMI, 142, 1985, 25–38 | MR | Zbl

[4] S. S. Vallander, “Vremena prebyvaniya dlya schetnykh tsepei Markova. IV. Tsepi na proizvolnom dereve”, Zap. nauchn. semin. LOMI, 158, 1987, 39–44 | MR | Zbl

[5] S. S. Vallander, “Nekotorye svoistva vremen prebyvaniya i perekhodov dlya schetnykh tsepei Markova”, Tezisy dokladov Chetvertoi Mezhdunarodnoi Vilnyusskoi konferentsii po teorii veroyatnostei i matematicheskoi statistike, v. 1, Vilnyus, 1985, 116–118

[6] K. Ito, G. Makkin, Diffuzionnye protsessy i ikh traektorii, Mir, M., 1968 | Zbl

[7] A. Berliner, R. Brualdi, “A combonatorial proof of the Dodgson/Muir determinant identity”, Intern. J. Inform. System Sci., 4:1 (2008), 1–7 | MR | Zbl